

Center for Advanced Non-Ferrous Structural Alloys An Industry/University Cooperative Research Center

Project 60: Fundamentals of Recrystallization in Binary Nb Alloys

Semi-annual Spring Meeting **April 2022**

- Student: Will Waliser (Mines)
- Faculty: Amy Clarke and Kester Clarke (Mines)
- Industrial Mentors: Noah Philips, Matthew Carl (ATI)

Center Proprietary – Terms of CANFSA Membership Agreement Apply

Project 60: Fundamentals of Recrystallization in Binary Nb Alloys

•	Student: Will Waliser (Mines) Advisor(s): Amy Clarke, Kester Clarke (Mines)	Project Duration MS: September 2021 to May 2023
•	Problem: Hf additions have been shown to increase recrystallization temperatures in Nb alloys, but alternatives that produce similar effects have not yet been identified. <u>Objective</u> : Identify binary and/or ternary Nb alloys of interest and experimentally measure recrystallization parameters and microstructural evolution with thermomechanical processing.	 <u>Recent Progress</u> Equipment training complete Alloy compositions determined Materials for producing Ti, Zr, Hf, V, Nb, Ta alloys arrived Remaining materials arriving soon (Mo, W, Re)
•	Benefit: Improved performance of superconductors and/or refractory multi-principal element alloys (RMPEAs).	 Heat treatment plan for alloy samples has been designed

Metrics							
Description	% Complete	Status					
1. Literature review	60%	•					
2. Select and obtain/produce binary and/or ternary Nb alloys	30%	•					
3. Thermomechanical processing and heat treatment of as-cast materials	0%	•					
4. Assess recrystallization temperatures and kinetics via heat treatment experiments	0%	•					
5. Microstructural characterization of thermomechanically processed samples	0%	•					

Industrial Relevance

(a) without intermediate annealing and (b) with intermediate annealing at 1010 $^{\rm o}{\rm C}/5$ h.

[1] Banno, Nobuya, et al Scripta Materialia 199 (2021): 113822.

Superconductor manufacturing

- Nb-Ta-Hf base alloy
 - Wire drawn
- Cu-Sn coating
- Diffusion reaction @ interface
 - 600-800 °C for ~100 h
 - Formation of Nb₃Sn superconductor phase

Literature Review & Element Selection

Fig. 2. Vickers hardness of Nb-4at%Ta-1at%Hf as a function of annealing temperature as well as Nb as a reference.

[1] Banno, Nobuya, et al Scripta Materialia 199 (2021): 113822.

Hf effects on Nb microstructure:

- Solid solution strengthening (SSS) and oxide pinning
- Stabilization of grain growth kinetics during recrystallization (Rx)
 - Stabilize heavily worked structures (i.e. Nb wires)
- Increased grain boundary (GB) diffusion paths for Sn into Nbbase alloy during Nb₃Sn reaction
 - Finer grain morphology in final superconducting phase
 - Increased flux pinning -> increased superconductor performance!

Alloying element selection process

- Good solubility
 - Similar strengthening effects
- Minimal loss of workability
- Cost effective

Literature Review & Element Selection

- 1 wt.% <u>Zr</u> shown to increase Rx temperatures by 100 °C [2]
 - SS interactions and applying dragging forces to high angle GBs
 - No significant effect on work hardening behavior
- Elements with high thermodynamic activity such as <u>V</u>, <u>Zr</u>, and <u>Ti</u> shown to increase Rx temperature of Nb due to the formation of refractory nonmetallic compounds inhibiting Rx [3]
- <u>Re</u> found to be an effective inhibitor of Rx in BCC refractory metals [3]
- Refractory elements such as <u>Mo</u>, <u>W</u>, <u>Ta</u> all have 100% solubility in Nb
 - Well documented SSS effects [3]
 - Sluggish diffusion compared to V, Zr, and Ti, likely to reduce workability of alloy [4]
- Alloying elements selected for initial testing: <u>Ti, Zr, Hf, V, Ta, Mo, W, Re</u>

Literature Review & Composition Selection

<u>Alloy</u>	Maximum amount used	Initial comp to be tested			
Nb-Ti	5 wt.% General Electric Cb-2	~2-3 wt.%			
Nb-Zr	2.5 wt.% ~2 wt.% Pratt & Whitney Cb132/Cb132M				
Nb-Hf	2 wt.% Westinghouse B-88	~2 wt.%			
Nb-V	5wt.% Westinghouse B-33/B-66	~5 wt.%			
Nb		~100 wt.%			
Nb-Ta	100 wt%	~5 wt.%			
Nb-Mo	100 wt%	~5 wt.%			
Nb-W	100 wt%	~5 wt.%			
Nb-Re	~55 wt%	~2 wt.%			

- Compositions decided by:
 - Solubility limitations
 - Current industry practices for commonly used Nb alloys [5]
 - Current industry practices for base Nb alloys for superconductor manufacturing
- Maximum amount used: composition/manufacturer/alloy
- Compositions may be subject to change upon initial testing
 - Feedback welcome!

CANFSA SPRING MEETING – APRIL 2022

Center Proprietary – Terms of CANFSA Membership Agreement Apply

- Materials acquired:
 - Nb chips
 - Hf chips
 - V chips
 - Nb50Zr chips
 - Nb47Ti rod
 - Nb7.5Ta rod
- To be obtained:
 - Nb-Mo, Nb-W, Nb-Re parent alloys
 - Ta chips
- Thank you to ATI for the materials!

7

Manufacturing Alloys

- Arc Melter
 - Vacuum or argon backfill
 - Casting shapes
 - Button
 - Plate
 - Waiting for results of chemical purity before further manufacturing
- Samples to be analyzed using light optical microscopy (LOM)
 - Micro-segregation
 - Cracking
 - Porosity

Deformation Testing: Gleeble

- Initial deformation to take place in Gleeble
 - Compression test at elevated temperature
 - Workability and flow stress
 - Results will provide a basis for rolling temperatures
- Samples to be analyzed using LOM
- If alloy passes Gleeble testing and LOM analysis, safe for rolling mill

Deformation Testing: Rolling Mill

- Samples will be reduced 60% via "warm" rolling
 - Rolling mill capable of 1200 °C hot rolling
 - Rx temperature for Nb ranges between .3-.5 T_m [6]
 - Rolling likely below 745 °C
 - Increments of 20% reduction
 - Hardness measurements to document work hardening behavior
- Fracture during rolling?
 - Workability requirement failed
 - Alloy and element discarded from further testing

Heat treatment plan

Sample:	<u>Nb-Ti</u>	<u>Nb-Zr:</u>	<u>Nb-Hf:</u>	<u>Nb-V</u>	<u>Nb: 60%</u>	<u>Nb-Ta:</u>	<u>Nb-Mo:</u>	<u>Nb-W:</u>	<u>Nb-Re:</u>
deformation	<u>60%</u>	<u>60%</u>	<u>60%</u>	<u>60%</u>		<u>60%</u>	<u>60%</u>	<u>60%</u>	<u>60%</u>
Heat	990, 1	990, 1	990, 1	990, 1	990, 1	990, 1	990, 1	990, 1	990, 1
treatment #1									
(°C, h)									
Heat	1050, 1	1050, 1	1075, 1	1050, 1	1100, 1	1100, 1	1100, 1	1100, 1	1100, 1
treatment #2									
(°C, h)									
Heat	990, 2	990, 2	990, 2	990, 2	990, 2	990, 2	990, 2	990, 2	990, 2
treatment #3									
(ºC, h)									

- Static Rx in Ar backfill furnace
- Conservative number of tests to keep the amount of samples manageable
- Standard heat treatment of 990 °C (0.4T_{m Nb}) for 1 h
- Secondary heat treatment temperatures chosen based on ThermoCalc simulations for alloy melting temperature:
 - − 1050 °C (~0.42 $T_{m Nb}$) → predicted melting temps < 2400 °C
 - − 1075 °C (~0.43 $T_{m Nb}$) → 2400 °C < predicted melting temps < 2477 °C
 - − 1100 °C (~0.44 $T_{m Nb}$) → predicted melting temps > 2477 °C
 - Adjust for differences in diffusion rates for alloying elements
- Subject to change upon testing, input welcome!

GANTT Chart

Challenges & Opportunities

- Manufacturing alloy samples using the arc melter
 - Remaining materials for Ta, W, Mo, Re alloys soon to be acquired
- Deformation testing
 - Initial testing in Gleeble to gather information on appropriate rolling parameters
 - LOM analysis of samples
 - Reduce samples 60% in rolling mill via hot rolling
 - Work hardening behavior recorded
 - Workability problems?
- Heat treat samples
 - Document microstructural evolution using EBSD and SEM techniques

Thank you! Will Waliser

wwaliser@mines.edu

References

[1] Banno, Nobuya, et al. "Influence of parent Nb-alloy grain morphology on the layer formation of Nb3Sn and its flux pinning characteristics." Scripta Materialia 199 (2021): 113822.

[2] Siciliano, Fulvio & Monteiro, Waldemar & Padilha, Angelo. (1995). Comparative study of the recrystallization of pure niobium and a Nb-1 wt.% Zr alloy. 86. 713-718.

[3] Savitskii, 1970, Physical Metallurgy Of Refractory Metals and Alloys

[4] Prokoshkin, D.A., Vasil'eva, E.V. & Vergasova, L.L. Interdiffusion of niobium and some refractory metals. *Met Sci Heat Treat* **9**, 199–201 (1967). <u>https://doi.org/10.1007/BF00653142</u>

[5]Frank, R. G. (1968). Recent advances in columbium alloys. *Refractory Metal Alloys Metallurgy and Technology*, 325–372. https://doi.org/10.1007/978-1-4684-9120-3_9

[6] Wilkinson, W. D. (1969). Chapter 8. In Properties of refractory metals, Gordon and Breach Science, pp. 304–307.