

Center for Advanced **Non-Ferrous Structural Alloys** An Industry/University Cooperative Research Center

Project 37-L: Advanced Engineered Coatings with Extended Die Life for Tooling

Semi-annual Spring Meeting **April 2022**

Center Proprietary – Terms of CANFSA Membership Agreement Apply

- Student: Nelson Delfino de Campos Neto (Mines)
- Faculty: Andras Korenyi-Both, Stephen Midson, Michael Kaufman (Mines)
- Industrial Mentors: Paul Brancaleon (NADCA), Rob Mayer (Queen City Forging Co.)

Project 37-L: Advanced Engineered Coatings with Extended Die Life for Tooling

- Student: Nelson Delfino de Campos Neto (Mines)
- Advisor(s): S. Midson, A. Korenyi-Both, M. Kaufman (Mines)

Project Duration

PhD: August 2018 to July 2023

- <u>Problem</u>: Molten aluminum tends to solder to die faces during the die casting process. Lubricants are applied to the die to reduce soldering and adhesion, but the lubricant reduces part quality.
- <u>Objective:</u> Identify PVD coatings to be applied to die casting dies to prevent soldering. Understand the mechanisms involved with adhesion.
- <u>Benefit:</u> Increase die casting part quality, eliminate the use of lubricants, extend die life and reduce cost-per-part.

Recent Progress

- Performed controlled laboratory die casting experiments at The Ohio State University.
- Started industry die casting trial at Stellantis.
- Characterization on tested core pins.
- Published paper: "The Use of Coatings to Minimize Soldering and Eliminate the Need for Lubrication during Aluminum High Pressure Die Casting" at Transactions of the NADCA 2021 Die Casting Congress & Exposition.

Metrics							
Description	% Complete	Status					
1. Literature review and development of molten aluminum tests	100%	•					
2. Identification of the mechanisms that controls soldering and adhesion behavior	100%	•					
3. Identification of PVD coatings to avoid molten aluminum soldering and adhesion	90%	•					
4. Identification of PVD coatings durability to survive as long as the die casting dies (100,000 shots)	80%	•					
5. In-plant trials. Guidelines for depositing the coating system on die components/tooling	35%	•					

Industrial Relevance

- Reducing or eliminating lubricant spray will:
 - -Significantly **improve the quality** of the die castings
 - Reduce gas porosity and scrap
 - Allow castings to be used in higher performance applications

-<u>Reduce costs</u>

- Eliminate purchase costs for lubricants
- Reduce effluent clean-up costs
- Significantly extend die life

Improve productivity

• Faster cycle rates

Aluminum HPDC Tests

- Two sets of tests to find best PVD coatings for lube-free die casting
- Planned testing at The Ohio State University (OSU)
 - 250 ton Buhler die casting machine
 - Controlled laboratory test
 - Try to run lube-free
- Planned testing at Stellantis (Kokomo Die Casting Plant)
 - 3,000 ton commercial die casting machine
 - Run PVD coated core pins for 2,500 shots
 - Evaluate soldering of different PVD coatings
 - Evaluate soldering progression and coating life

Testing at Stellantis (Kokomo Die Casting Plant)

Core Pin Soldering at Stellantis

- Runs single cavity on a 3,000ton die casting machine
- The two very similar core pins are shown on the bottom
 - Utilize internal water cooling
- Core pins with two surface finishes were PVD coated
 - Rougher draw-polish finish
 - Smoother diamond polish
- Around 2,500 aluminum die castings will be made to track steady-state soldering

3D Optical Images

Center Proprietary – Terms of CANFSA Membership Agreement Apply

polished

(d) Al_2O_3 -draw

Si-DLC-polished 5215 Soldering Mechanisms

Facing Gate

Si-DLC-polished 5215 Soldering Mechanisms

Opposite Side of Gate

CANFSA SPRING MEETING – APRIL 2022

Center Proprietary – Terms of CANFSA Membership Agreement Apply

Qualitative Grade and Quantitative Results

Coating	Coating Supplier	# of Shots	Stellantis Observations	Stellantis Grade	Mass change (5205)	Mass change (5215)	Surface Soldered (5205)	Surface Soldered (5215)
Nitrided (draw)	-	2500	Both cores soldered	D	N/A	N/A	46 ± 5 %	$58 \pm 5~\%$
Si-DLC (polished)	#1	2430	Cores basically clean - no solder. Coating looks like it is intermittent.	A-	+ 0.20 g	+ 0.28 g	31 ± 9 %	38 ± 17 %
Si-DLC (draw)	#1	2503	Cores look clean. Note: core puller could have rubbed off some soldering.	B+	-	-	-	-
VC (polished)	#1	4469	Some light solder (cores destroyed)	B-	N/A	N/A	N/A	N/A
Al ₂ O ₃ (polished)	#1	2572	Some solder (cores destroyed)	C+	N/A	N/A	N/A	N/A
Al ₂ O ₃ Alumina (draw)	#1	3818	One core fairly clean and one had solder. Soldering on gate side.	C-	+ 0.17 g	N/A	45 ± 5 %	N/A
AICrCN (polished)	#5	4112	One core relatively clean and one with solder. Soldering happening on gate side.	D+	+ 0.19 g	- 0.17 g	48 ± 20%	37 ± 23 %

Soldering on Core Pins 5205 vs. 5215 and GS vs. OP

CANFSA

75 -

Soldering by Coating and Stellantis Grade

Tribology Parameter COF and Soldering

Si-DLC 5205 GS Si-DLC (5205) Si-DLC 5205 OP Si-DLC (5215) **Si-DLC 5215 GS** Si-DLC 5215 OP AICrN/TiCN (5205) AICrN/TiCN 5205 GS AICrN/TiCN (5215) AICrN/TiCN 5205 OP Al₂O₃ (5205) AICrN/TiCN 5215 GS High Soldering + Wear Rate (mm³N⁻¹m⁻¹) 01 ...01 Wear Rate (mm³N⁻¹m⁻¹) 01 ₂01 AICrN/TiCN 5215 OP Uncoated/Nitrided H13 (5205) Al₂O₃ 5205 GS **High Wear Rate** Uncoated/Nitrided H13 (5205) Al₂O₃ 5205 OP Uncoated/Nitrided H13 5205 GS Low Soldering + Uncoated/Nitrided H13 5205 OP Uncoated/Nitrided H13 5215 GS **High Wear Rate** ☆ Uncoated/Nitrided H13 5215 OP Low Soldering + High Wear Rate High Soldering + High Wear Rate Low Soldering + Low Wear Rate High Soldering + Low Wear Rate High Soldering + Low Soldering + Low Wear Rate Low Wear Rate 10⁻⁹ 10⁻⁹ 15 30 55 60 65 10 20 25 35 40 45 50 70 75 10 15 20 25 30 35 50 55 60 65 70 75 40 45 Soldering (%) Soldering (%)

Tribology Parameter Wear Rate and Soldering

Tribology Parameter Δd/D and Soldering

CANFSA SPRING MEETING - APRIL 2022

Center Proprietary – Terms of CANFSA Membership Agreement Apply

Wetting and Tribology Trends on Soldering CANFSA

Wetting and Tribology Trends on Soldering CANFSA

Summary & Conclusions

- Casting trials at Stellantis for coated core pins positioned directly in-front of the gate
 - Seven sets of core pins have been tested so far
 - Similar soldering mechanisms were found on the core pins differing on its extent and position
 - Erosion, soldering, gross soldering, soldering on coating, and erosion/thermal spalling were the main mechanisms
 - Similar amount of soldering was found for both core pins 5205 and 5215
 - The side of the core pins facing the gate suffered more soldering than the opposite side
 - Coated core pins presented less soldering than the only Nitrided condition
 - Si-doped DLC coating exhibited the least amount of soldering
 - Exclusion maps were developed combining the tribology parameters COF, wear rate and $\Delta d/D$ and the measured soldering
 - Trends were observed when combining wetting angles and tribology parameters COF and $\Delta d/D$ with the measured soldering
 - Similar trend was not found for the tribology parameter wear rate

Future Work

- Continue coated core pins soldering trial at Stellantis
- Characterization of PVD coatings
 - -Adhesion quality
 - -Structure and microstructure
 - Roughness and surface defects
 - -Wear and oxidation resistance
- Characterization of aluminum soldered samples
 - Examine the phases formed at the interface between the solidified aluminum and the tested coatings
- Characterization of the adhesion mechanisms related to soldering
- Transition the best coatings to die casters

Gantt Chart

Development of the test and Laboratory trials 3. Mechanisms that rules the adhesion behavior Identification of relations between mechanisms Propose a correlation to predict adhesion behavior 4. PVD Coatings

Find the best working layer and architecture

Identify the coating life

5. Guidelines for coating system on tooling

6. In-plant trials

7. Thesis

Course work (Courses, Qualifying Exam)

Writing Defense

CANFSA SPRING MEETING – APRIL 2022

Center Proprietary – Terms of CANFSA Membership Agreement Apply

Acknowledgements

- This program is sponsored by the Defense Logistics Agency Troop Support, Philadelphia, PA and the Defense Logistics Agency Information Operations, J68, Research & Development, Ft. Belvoir, VA
- N.D. Campos Neto is thankful to CAPES Brazil for a scholarship from the program DOC-PLENO Full Doctorate Abroad - Call No. 48/2017 - Selection 2018 process number 88881.175453/2018-01
- Accu-Die & Mold in Stevensville, MI fabricated the die at no cost to the project
- Kind and Co in Wiehl, Germany supplied the steel for the die at no cost to the project
- Century Sun Metal Treating in Traverse City, MI heat treated the steel for the die at no cost to the project
- Phygen Coatings in Minneapolis, MN for PVD coating the die cavities
- IBC Coatings in Lebanon, IN for polishing the core pins
- Tribologix in Golden, CO for allowing the use of coatings testing equipment at no cost to the project
- Stellantis in Kokomo, IN for helping the project
- Dr. Alan Luo and his group at OSU for receiving Nelson as a visiting researcher
- Dr. Ryan Brune at CDME (OSU) for helping in the die casting trials

Challenges & Opportunities

- Run controlled laboratory die casting experiments
 - At The Ohio State University
 - Laboratory size die casting machine (Buhler 250-ton)
 - Machine broke before finishing all proposed experiments
- Run industrial trials on selected coatings deposited on core pins in front of gate to understand steady-state soldering
 - Automotive die casting plant at Stellantis (Kokomo die casting plant)
 - High production volume
 - Difficult to control the trial in a production environment

Thank you! Nelson Delfino de Campos Neto ndelfino@mines.edu

Center for Advanced Non-Ferrous Structural Alloys An Industry/University Cooperative Research Center

Project 53: Ti-6AI-4V Implant coatings/surface treatments for improved wear performance against UHMWPE

Semi-annual Spring Meeting **April 2022**

- Student: Nelson Delfino de Campos Neto, Arrianna Matthews (Mines)
- Faculty: Dr. Michael Kaufman, Dr. Kester Clarke (Mines)
- Industrial Mentors: Scott Bingham, Oscar Quintana (DePuy Synthes)

Center Proprietary – Terms of CANFSA Membership Agreement Apply

Project 37: Ti-6AI-4V Implant coatings/surface treatments for improved wear performance against UHMWPE

Student: Nelson Delfino de Campos Neto, Arrianna Matthews **Project Duration** PhD: January 2021 to May 2023 (Mines) Advisor(s): Michael Kaufman, Kester Clarke (Mines) **Recent Progress** Problem: Ti-6AI-4V wearing against UHMWPE is the dominant Identification of coatings capabilities. ٠ material selection for some knee and other replacement joints. Identification of wear testing capabilities. ٠ Objective: Reducing in service wear rates offers potential for • Initial wear testing. maintaining desired mechanical performance for longer service conditions. Benefit: Extending service life reduces the complications associated with total replacement and/or maintenance surgeries.

Metrics							
Description	% Complete	Status					
1. Literature review / Project definition	15%	•					
2. Obtain base materials and testing materials	75%	•					
3. Surface treatments and coatings	5%	•					
4. Wear testing	5%	•					
5. Fatigue testing	0%	•					

Significance- Overview

 Study the femoral component implant and UHMWPE insert tribological contact

Ideal Base Material & Wear Surface Coating Properties

- Metal Alloys and Ceramic Coating(s)
 - Ti-6Al-4V and Ti-6Al-7Nb
 - TiN, TiNbN and ZrN
- Low Friction
 - Reduces wear and interface stresses
- High Hardness & Scratch Resistant
 - Limits indentations
- Low Allergy
 - Ensures compatibility
- Adherent
 - Avoids flaking or debris formation
- Topologically Smooth & No Porosity
 - Lowers wear on mating surface
- Corrosion Resistant
 - Decreases degradation over time
- Cost Effective

[3]

Coatings Capabilities

Sputtering and RF at Mines

Sputtering at Mines

CAE at Tribologix

CANFSA SPRING MEETING - APRIL 2022

Wear Testing Capabilities

- Sliding wear contact to coating against
 - -UHMWPE
 - -Soft Metals
 - -Al₂O₃ or other abrasive material
- Testing conditions
 - -Dry
 - -Wet submerged in artificial body fluid
 - -With bone powders (dry and wet)
 - -With cement powder (dry and wet)
 - -With bone and cement powder mixture (dry and wet)

Initial Dry Wear Test Results – Baseline TiN on Ti-6AI-4V

Initial Dry Wear Test Results – Baseline TiN on Ti-6AI-4V

Ball ¼"

0.8 0.7 0.8 0.6 U 0.5 0 0.4 0 0 3 0.7 · man have the the south and the 0.3 HDPE on TiN (1 um) 0.6 0.2 Al on TiN (1 um) 0.1 Al2O3 on TiN (1 um) 0.5 -0.0 0 1000 2000 3000 9000 40005000 6000 7000 8000 10000 COF 0.4 0.8 0.7 0.3 · 0.6 mesh 600 mesh mesh ц ^{0.5} О 0.4 О 0 3 0.2 m m mm 0.3 HDPE on TiN (600 mesh) 600 0.1 -600 0.2 -Al on TiN (600 mesh) -0.1 Al2O3 on TiN (600 mesh) 0.0 0.0 Al_2O_3 HDPE AI 1000 2000 7000 8000 9000 0 3000 4000 5000 6000 10000 Cycles

Initial Dry Wear Test Results – Baseline TiN on Ti-6AI-4V

CANFSA SPRING MEETING – APRIL 2022

Center Proprietary – Terms of CANFSA Membership Agreement Apply

Initial Dry Wear Test Results – Baseline TiN on Ti-6AI-4V

CANFSA SPRING MEETING - APRIL 2022

Center Proprietary – Terms of CANFSA Membership Agreement Apply

Tribology Parameters – Baseline TiN on Ti-6AI-4V

Challenges & Opportunities

- Use a knee simulator for testing best coating on the project
- Leverage from the coatings and tribology knowledge developed
 - Project 37-L: Advanced
 Engineered Coatings with
 Extended Die Life for Tooling
 - Project 54-L: Lubricious PVD Coatings for Forging Dies

[2]

- [1] <u>https://www.thecenteroregon.com</u>, Orthopedic & Neuro Surgical Care and Research Science: A Notion in Motion, American Society of Orthopedic Surgeons.
- [2] Jun Fu, Zhong-Min Jin, Jin-Wu Wang, UHMWPE Biomaterials for Joint Implants, Structure, Properties, and Clinical Performance, ISSN21950644, Springer Series in Biomaterials and Engineering, 2019.
- [3] https://www.lincotekmedical.com/products-services/coatingsolutions/physical-vapor-deposition-coatings/

Center for Advanced Non-Ferrous Structural Alloys An Industry/University Cooperative Research Center

Thank you!

Nelson Delfino de Campos Neto <u>ndelfino@mines.edu</u>

Center Proprietary – Terms of CANFSA Membership Agreement Apply