

Center for Advanced Non-Ferrous Structural Alloys An Industry/University Cooperative Research Center

IOWA STATE UNIVERSITY

Project 36F-L: Microstructure and Processing Links in Beta-Titanium during Additive Manufacturing

Semi-annual Spring Meeting **April 2022**

- Student: Chris Jasien (Mines)
- Faculty: Amy Clarke (Mines)
- Industrial Mentors: John Foltz (ATI), Lee Semiatin (AFRL)
- Other Participants: Jonah Klemm-Toole (Mines)

LORADOSCHOOL FMINES

Center Proprietary – Terms of CANFSA Membership Agreement Apply

Project 36F-L: Microstructure and Processing Links in Beta-Titanium during Additive Manufacturing

 Student: Chris Jasien (Mines) Advisor(s): Amy Clarke (Mines) 	Project Duration PhD: August 2020 to August 2024
<u>Problem:</u> Common titanium alloys for additive manufacturing (AM) undergo solid-state phase transitions during cooling that inhibit understanding of solidification.	 <u>Recent Progress</u> Completion of dilatometry on as-built LPBF Ti-5553 samples
<u>Objective:</u> Subject beta-titanium alloys to conditions representative of AM and understand retention of the metastable beta phase and microstructure evolution.	 Optical microscopy on cross-sections of Ti-1023 Advanced Photon Source (APS) samples
<u>Benefit:</u> The development of solidification models and knowledge base of titanium alloys for AM.	 Initial attempts of EBSD on Ti-1023 cross-sections

Metrics			
Description	% Complete	Status	
1. Literature review	50%	•	
2. Analyze APS data (solidification velocities)	100%	•	
3. Determination of thermal history using simulations	100%	•	
4. Supporting material characterization	25%	•	
5. Laser processing of novel Beta-Ti alloys with various AM process parameters	0%	•	

Previous Simulation Work Ti-10V-2Fe-3AI (Ti-1023) APS Experiments

Simulations - Spot Melts

1ms Dwell

Simulations - Spot Melts

Simulations - Spot Melts

Center Proprietary – Terms of CANFSA Membership Agreement Apply

7

Cross-Section Optical Images Ti-1023 APS Experiments

Center Proprietary – Terms of CANFSA Membership Agreement Apply

Cross-Sections Spot Melts

Cross-Sections Spot Melts

Cross-Sections Rasters 139W & 0.5 m/s

192W & 0.5 m/s

Cross-Sections Rasters 139W & 0.5 m/s

192W & 0.5 m/s

Center Proprietary – Terms of CANFSA Membership Agreement Apply

100 µm

CANFSA SPRING MEETING – April 2022

Cross-Sections Rasters 139W & 0.5 m/s

CANFSA SPRING MEETING – April 2022

Cross-Sections Rasters 139W & 0.5 m/s

Martensite forms in melt-pool and HAZ regardless of laser processing condition

Equilibrium Alpha-Transus Ti-5AI-5V-5Mo-3Cr (Ti-5553)

Settefrati, Amico, et al. "Precipitation sequences in beta metastable phase of Ti-5553 alloy during ageing." *Proceeding of the 12th World Conference on Titanium (Ti-2011). Science, Beijing.* 2012.

I)

J. Coakley *et al.*, "Precipitation processes in the Beta-Titanium alloy Ti–5Al–5Mo–5V– 3Cr," *J. Alloys Compd.*, vol. 646, pp. 946–953, Oct. 2015, doi: 10.1016/j.jallcom.2015.05.251

Settefrati, Amico, et al. "Precipitation sequences in beta metastable phase of Ti-5553 alloy during ageing." *Proceeding of the 12th World Conference on Titanium (Ti-2011). Science, Beijing.* 2012.

Settefrati, Amico, et al. "Precipitation sequences in beta metastable phase of Ti-5553 alloy during ageing." *Proceeding of the 12th World Conference on Titanium (Ti-2011). Science, Beijing.* 2012.

CANFSA SPRING MEETING – April 2022

Center Proprietary – Terms of CANFSA Membership Agreement Apply

Gantt Chart

Challenges and Opportunities

- Thin sample geometry of APS samples has complicated the metastable beta-Ti preparation process
 - No electropolishing
- Difficulty in obtaining useful EBSD scans from Ti-1023 APS samples

 Highly deformed martensite structure interferes
- Procedure has been developed for "electropolishing-less" EBSD prep of metastable beta-Ti (with no martensite)
 - Useful for future work of this project which involves other alloys in this class

Future Work

- Ion milling of the melt pool region
 - Potential solution to current EBSD problems
- Further optical microscopy of Ti-1023 for varying process conditions
 - Overlapping spots and rasters (effect of thermal cycling)
- LPBF processing and subsequent microstructural characterization of novel metastable beta-Ti alloys
- Possible heat treatments of AM metastable beta-Ti alloys to exploit unique microstructural features for exceptional mechanical properties

Conclusions

- Martensite forms within the melt-pool and heat affected zone for both simple spot-melts and rasters in Ti-1023
 - Ability to accommodate stress without cracking
 - Steady-state region in raster not exhibit this

- Heating rate plays a large in role in phase evolution and temperatures at which they form in Ti-5553
 - Informs future optimization of heat treatments for metastable beta-Ti

Thank you! Chris Jasien jasien@mines.edu