

Center for Advanced Non-Ferrous Structural Alloys An Industry/University Cooperative Research Center

IOWA STATE UNIVE

Project 45-L: Additive Manufacturing Feasibility of **Refractory Alloys**

Semi-annual Fall Meeting **April 2022**

Student: Abby Miklas (Mines)

ORADOSCH

- Faculty: Amy Clarke, Jonah Klemm-Toole (Mines)
- Industrial Mentors: Andy Deal (Kansas City National Security Campus), Andrew Kustas (Sandia National Laboratories), Noah Phillips (ATI)

FMINES

This work was funded by the Department of Energy's Kansas City National Security Campus which is operated and managed by Honeywell Federal Manufacturing Technologies, LLC under contract number DE-NA0002839.

Unclassified Unlimited Release NSC-614-4475, 4/2022

Project 45-L: Additive Manufacturing Feasibility of Refractory Alloys

 Student: Abby Miklas (Mines) Advisor(s): Amy Clarke and Jonah Klemm-Toole (Mines) 	Project Duration Masters: August 2020 to August 2022	
 <u>Problem:</u> Opportunity exists to produce refractory alloys for performance in extreme environments (e.g., ultrahigh temperatures). <u>Objective:</u> Understand solidification and microstructure development in refractory alloys under additive manufacturing conditions. <u>Benefit:</u> Strategies for alloying and microstructure development by additive manufacturing to achieve tailored microstructures. 	Recent Progress • Second trial of laser track melts have been performed on material - Binary alloys: Mo30Nb, Nb7.5Ta - Nb C103 - MoNbTaTi • CET modeling • Initial SYSWELD simulations • Metallography • Literature review	

Metrics				
Description		% Complete	Status	
1. Literature review		60%	•	
2. Provide samples to KCNSC and acquire laser track melts		100%	•	
3. Microstructure characterization by scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD)		25%	•	
4. Perform thermal gradient modeling of melt tracks		50%	•	
5. Columnar-to-equiaxed transition (CET)/solidification modeling		75%	•	
CANFSA FALL MEETING – April 2022	Center Proprietary – Terms of CANFSA Membership Agreement Apply	Unclassified L NSC-614-4475	Jnlimited Release 5, 4/2022 2	

Refractory Multi-Principal Element Alloys (RMPEAs)

- Refractory elements are those that can maintain their properties above 1200 °C and are used as structural materials for extreme environments (i.e., W, Mo, Ta, Nb, etc.) [1]
- RMPEAs are defined as an MPEA containing refractory elements as principal constituents
 [2]
- RMPEAs suffer from low ductility at room temperature and are challenging from a workability standpoint (i.e., difficult to thermomechanically process) [3]
- Additive manufacturing (AM) has the potential to be an attractive alternative processing pathway for refractory alloy and RMPEA fabrication (e.g., avoids thermomechanical processing and post-process machining) [3, 4]

Mo30Nb

Laser Track Melts

Parameter Set	Power (W)	Speed (m/s)
1	162	0.8
2	243	0.2
3	162	0.5
4	405	1.7
5	324	1.7

Nb7.5Ta

1 2

3 4 5

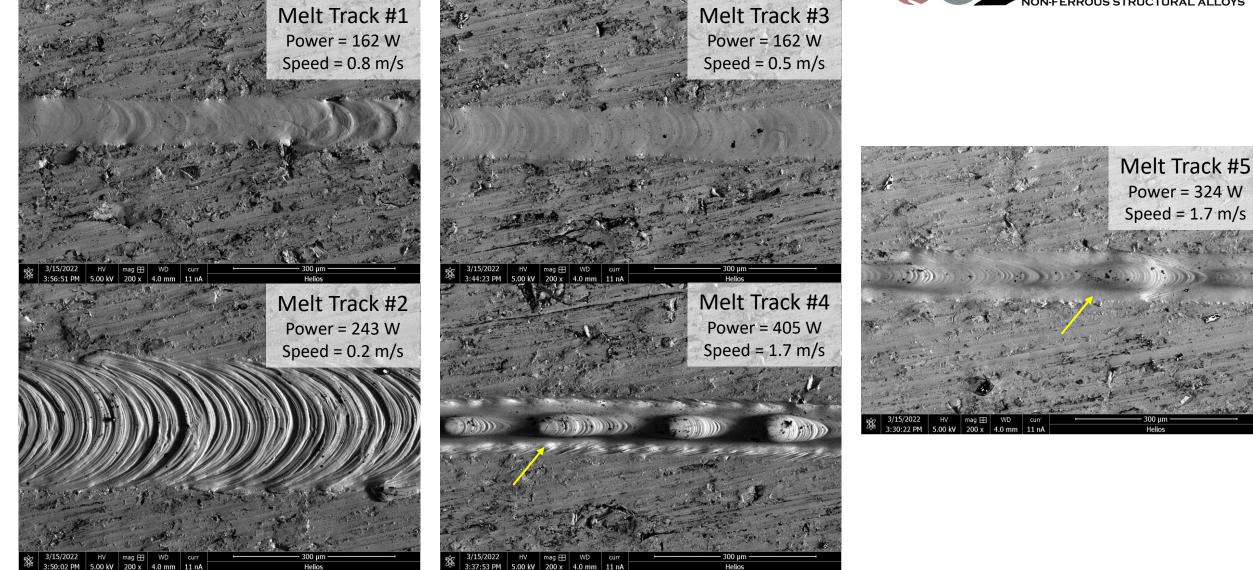
C103 NbMoTaTi 1 2 3 4 5 1 2 3 4 5 1000µm 1000µm

Laser behavior is consistent within a single track.

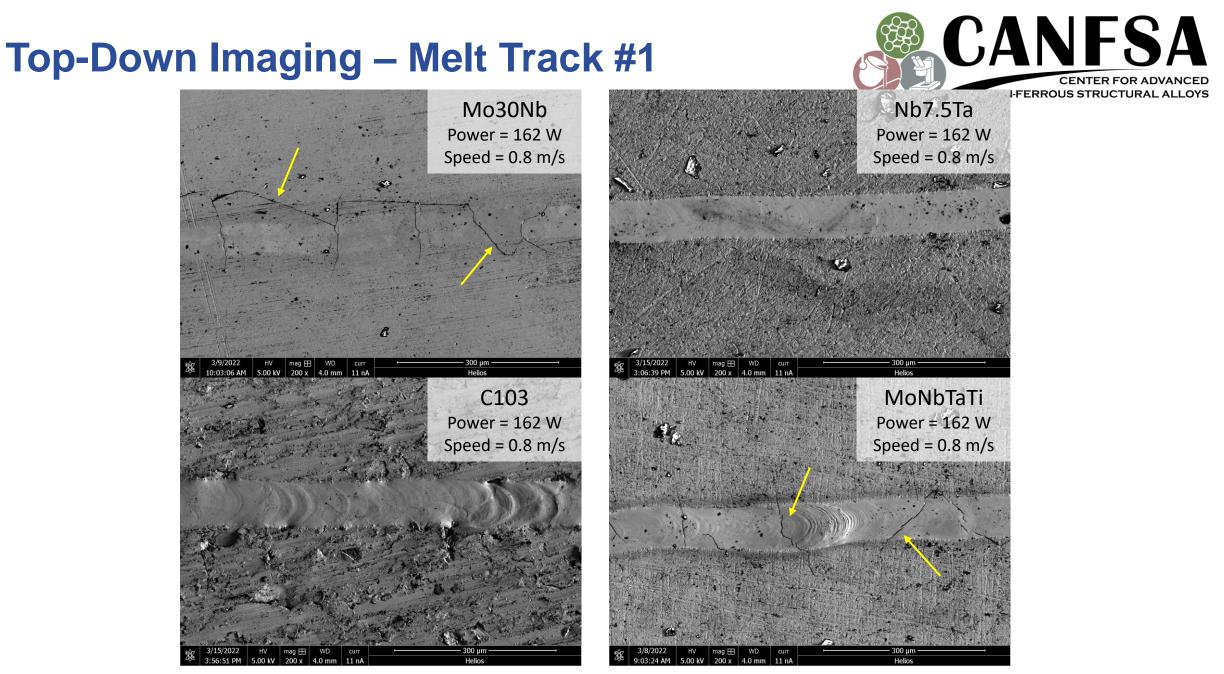
CANFSA FALL MEETING – April 2022

2 3

4 5

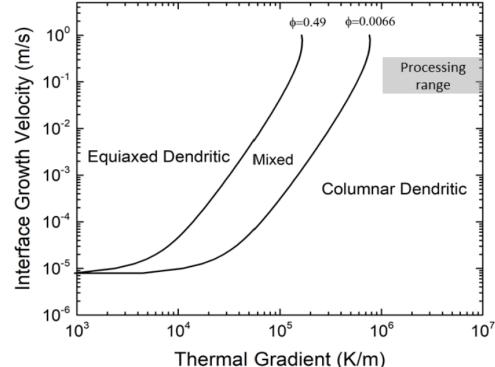

1000µm

Center Proprietary – Terms of CANFSA Membership Agreement Apply


4

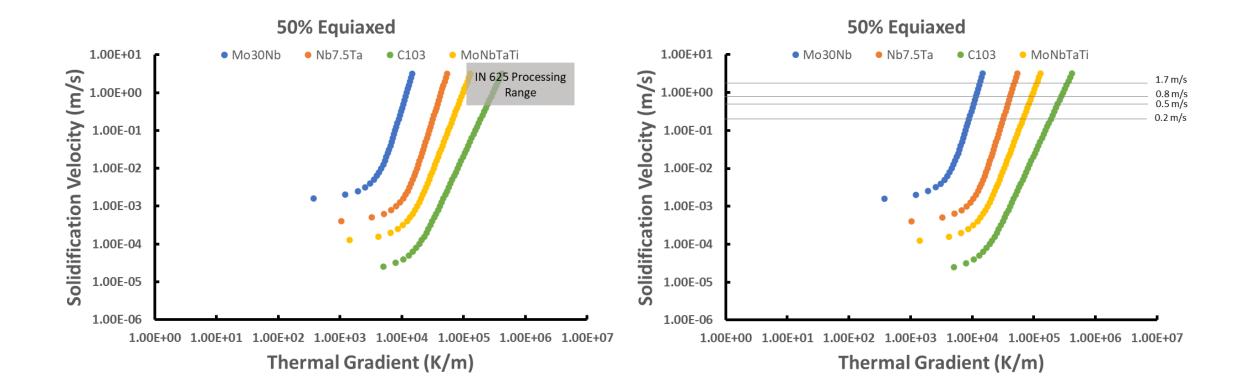
Top-Down Imaging – C103

Center Proprietary – Terms of CANFSA Membership Agreement Apply

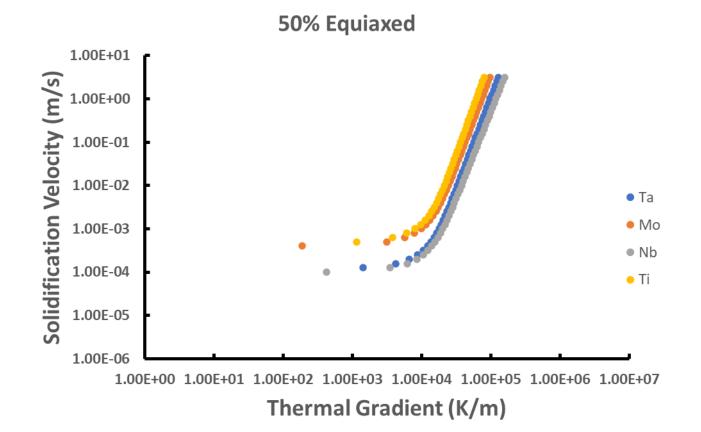

CANFSA FALL MEETING – April 2022

Center Proprietary – Terms of CANFSA Membership Agreement Apply

CET Modeling



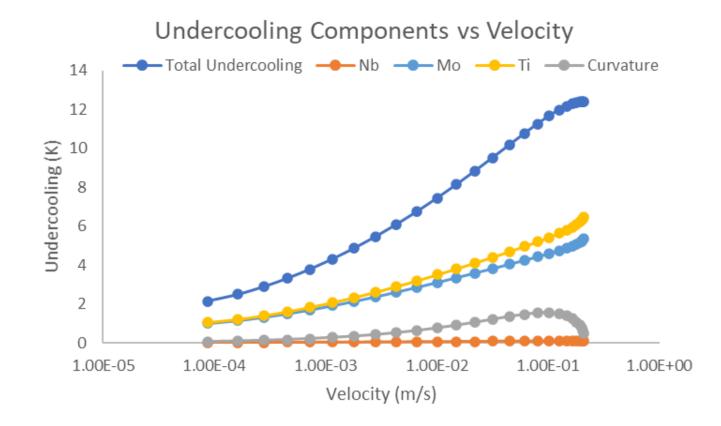
- Using a simplified Kurz, Giovannola, Trivedi (KGT) model [5,6]
- Inputs needed for this model:
 - Gibbs-Thomson coefficient of matrix element, Γ
 - İnitial solute concentration, C
 - Diffusivity of solutes, D
 - Partitioning coefficient of solutes, k
 - Liquidus slopes of solutes, m
- Models can be further refined with information gathered from evaluation of melt track cross sections and thermal gradient modeling



C103 will have the highest amount of equiaxed grains.

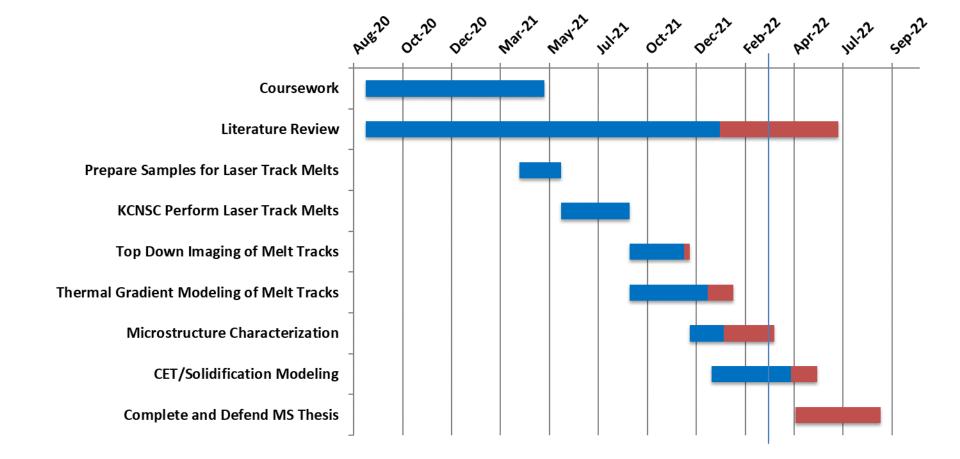
Center Proprietary – Terms of CANFSA Membership Agreement Apply

CET Modeling of an Equiatomic Alloy



Evaluating differing predictions for the MoNbTaTi system, assuming different "base" elements.

Contributions to Total Undercooling



 Determining the undercooling contribution of each solute to the constitutional undercooling can guide in alloy design and selection for AM

Gantt Chart

Upcoming Work

- Evaluate the laser tracks metallographically
 - SEM
 - EBSD
- Perform thermal gradient modeling of laser melt tracks with commercially available software (SYSWELD)
- Compare CET/solidification with thermal gradients and microstructure characterization results

Challenges & Opportunities

- Inconsistent material preparation behavior
- Learning metallographic analysis and modeling techniques that are new to me

Thank you! Abby Miklas amiklas@mines.edu

References

- [1] M. C. Gao, J. W. Yeh, P. K. Liaw, Y. Zhang, High Entropy Alloys: Fundamentals and Applications, Switzerland: Springer International Publishing, 2016
- [2] B. S. Murty, J. W. Yeh, and S. Ranganathan, "Chapter 1 A Brief History of Alloys and the Birth of High-Entropy Alloys," in High -Entropy Alloys, London: Butterworth-Heinemann, 2014.
- [3] N. R. Philips, M. Carl, and N. J. Cunningham, "New Opportunities in Refractory Alloys," Metallurgical and Materials Transactions A, 14 -May-2020. [Online]. Available: https://link.springer.com/article/10.1007/s11661-020-05803-3. [Accessed: 25-Mar-2021].
- [4] E. Lopez, J. Kaspar, L. Kotte, L. Stepien, O. Zimmer, M. Kuczyk, C. Leyens, "High Entropy Alloys for Additive Manufacturing," FORMNEXT, 21-Sep-2019. [Online]. Available: https://www.researchgate.net/publication/337604151_HIGH_ENTROPY _ALLOYS_FOR_ADDITIVE_MANUFACTURING?enrichId=rgreq-92fe72a37de35b24de5d3837edd4b490-XXX&enrich Source=Y292ZXJQYWdlOzMzNzYwNDE1MTtBUzo4MzAyMzgyNzE0ODgwMDJAMTU3NDk1NTYzNzgwNg%3D%3D&el=1_ x_2&_esc=publicationCoverPdf. [Accessed: 25-Mar-2021]
- [5] W. Kurz, B. Giovanola, and R. Trivedi, "Theory of microstructural development during Rapid Solidification," Acta Metallurgica, vol. 34, no. 5, pp. 823–830, 1986.
- [6] P. Mohammadpour and A. B. Phillion, "Solidification microstructure selection maps for laser powder bed fusion of multicomponent alloys," IOP Conference Series: Materials Science and Engineering, vol. 861, no. 1, p. 012005, 2020.