

Center for Advanced Non-Ferrous Structural Alloys An Industry/University Cooperative Research Center

IOWA STATE UNIVERSITY

Project 48: Grain Boundary Fracture Analysis in Aluminum 7085

Semi-annual Spring Meeting **April 2022**

- Student: Scott Blazanin (ISU)
- Faculty: Dr. Peter Collins (ISU)
- Industrial Mentors: Dr. Matt Krug (AFRL)

Center Proprietary – Terms of CANFSA Membership Agreement Apply

Project 48: Grain Boundary Fracture Analysis in Aluminum 7085

 Student: Scott Blazanin Advisor(s): Professor Peter Collins (ISU), Maria Quintana (ISU),	Project Duration
Matt Krug (AFRL)	Master's: November 2020 – May 2022
 <u>Problem:</u> Atypical cracking behavior is observed in forged aluminum 7085 plates after fatigue testing. The mechanisms of crack propagation and branching events in this alloy are understudied. <u>Objective:</u> Conduct comprehensive metallographic characterization for the analysis of delamination cracking and surrounding microstructure. <u>Benefit:</u> Understanding crack behavior in Al 7085 during cyclic loading of this alloy. 	 <u>Recent Progress</u> All sample sections metallographically prepared for optical, EBSD characterization Fracture edge mosaics and EBSD maps obtained Secondary crack lengths and densities quantified via MIPAR EBSD data analysis being completed via MTEX Thesis writing in progress for May 9 dissertation

Metrics				
Description		Status		
1. Literature review	90%	•		
2. Sample preparation for optical imaging and EBSD analysis	100%	•		
3. Imaging (optical, SEM-BSE) and EBSD area scans	85%	•		
4. Microstructural characterization (secondary crack length and density, texture and crystal orientation analysis)	75%	•		
5. Relate microstructural features to fatigue crack growth, including macroscale metrics	50%	•		

Gantt Chart

Relevance of This Work to Industry

- Material-geometry combinations for structural aircraft components have changed
 - Manufacture of unitized components for structural support shows improved performance and reduced weight
- AA7085 (AI 7085)
 - 7-8 Zn, 1.2-1.8 Mg, 1.3-2.0 Cu, 0.08-0.15 Zr, 0.08 Fe, 0.06 Si, balance Al (wt%)
 - Advantageous to other 7xxx series AI alloys
 - Constant YS and UTS (thickness from 0 to 12")
 - Improved fracture toughness and fatigue properties

Burns et al., International Journal of Fatigue, 2015. (p 253) Mueller et al., ALCOA 7085 Forgings: 7th Generation Structural Solutions, 2006. (p 12-13)

Center Proprietary – Terms of CANFSA Membership Agreement Apply

Project Background

Problem

- Delamination cracking intrinsic to the fracture process in AI 7085 presents design and life prediction challenges
 - Current testing and assessment procedures (ASTM E647-15e1) do not account for the effects of delamination cracking on toughness and strength, nor do they account for the orientation dependence of secondary cracking in AA7085

Objectives

- Develop methods to comprehensively analyze grain effects on crack behavior
 - Understand influence of local crystallographic orientation on crack tip energy
 - Relate loading conditions and crack growth
 - Determine microstructural conditions that promote secondary cracking
- Understand crack branching and grain boundary delamination behavior in AI 7085
 - Provide information for better design decisions and qualification of components using this alloy within the aerospace industry
 - Refine predictions on part life
 - Enable processing modifications for the reduction or elimination of unwanted crack behavior

Groundwork from Literature

According to foundational work on delamination cracking in aluminum alloys:

- Grain anisotropy leads to increased delamination cracking along elongated grain boundaries (Sohn et al.)
- Grain boundaries in Al-Li alloys show simulated elevated mean stress on grain boundaries (Messner, Beaudoin et al.)
- Delamination in Al-Li alloys typically initiates between soft and stiff grain pairs and may be characterized by a difference in Taylor factors (Messner et al., Tayon et al.)
- Delamination cracking increases apparent fracture toughness via deflection and shielding of the primary crack (Rao and Ritchie)

6

Grain Anisotropy of AA7085

CANFSA CENTER FOR ADVANCED NON-FERROUS STRUCTURAL ALLOYS

- Forging process causes elongated, flat grains
- Anisotropic grain structure leads to anisotropic mechanical properties

Condition	Orientation	Diagram
Crack splitting delamination	S-L, S-T	
Crack arrester delamination	T-S, L-S	
Crack divider delamination	L-T, T-L	

embership Agreement Apply

Neely, Thesis, 2015. Rao et al., *Materials Science and Technology*, 1989. ASTM E399-20a, 2021.

Sample Set Overview

direction

Q

primary

crack growth

Load axis

Crack turning is present on both macro- and microscopic length scales.

 \bigcirc

Center Proprietary – Terms of CANFSA Membership Agreement Apply

8

Optical Mosaic Showing Secondary Cracks

CANFSA SPRING MEETING – Spring 2022

Center Proprietary – Terms of CANFSA Membership Agreement Apply

Quantifications made:

Primary crack edge and

value differences

– True primary crack length

be isolated and measured

Crack edges can be segmented

out of the image using pixel

 Primary crack length between secondary cracks

individual secondary cracks can

MIPAR for Secondary Crack Quantification

- Number of secondary cracks
- Length of secondary cracks

Secondary Crack Length and "Density"

- Across full fracture edge, secondary crack length and rate of occurrence increase
- Secondary: Primary = $\frac{(\sum_{i=1}^{i=n} L_{s,i})}{X_n X_1}$

L_s = secondary crack length, *X* = *x*-coordinate of secondary crack initiation point

EBSD Analyses

- Regions of interest:
 - Secondary crack initiations
 - Secondary crack redirections
 - Secondary crack terminations

MTEX Script for Rapid EBSD Data Analysis

- MTEX MATLAB toolbox used for all EBSD data analysis
- Script developed to take raw EBSD datasets and output:
 - IPF-X, -Y, -Z maps with color IPF key
 - Band contrast maps
 - Segmented grain orientation maps
 - <u>Grain boundary misorientation maps and</u> <u>misorientation distribution</u>
 - Distribution of poles in IPF
 - Visualization of crystals overlaid onto segmented grain maps
 - Pole figures in (100), (110), (111) directions
 - Kernel average misorientation maps
 - Schmid factor maps

CANFSA

Center Proprietary – Terms of CANFSA Membership Agreement Apply

Pole Figures Showing Texture of L-S and T-S samples

*data taken from large area scan along fracture edge

Secondary Crack Initiation

Secondary Crack Redirection

Secondary Crack Termination

Distributions of GB Misorientation Angles

20 (%) 20 15 10 Counts Misorientation angle (degrees) Misorientation angle (degrees)

Grain Misorientation Angles in Bulk

Grain Misorientation Angles at Secondary Crack Edges

Kernel Average Misorientation

Kernel Average Misorientation

- Secondary crack quantification shows an increase in secondary crack number and length as the primary crack progresses
 - Linking this increase to an increasing ΔK is of interest
- Local grain misorientation is a good predictor for secondary crack nucleation and growth
 - Grain boundary misorientations over 30 degrees show increased delamination crack occurrences
- Delamination fracture along high-angle grain boundaries behaves like brittle fracture
 - KAM shows little stored strain energy in grains bounding high-angle GB cracks

Remaining deliverables:

- Finalized data analyses
- Thesis document
- Dissertation

Thank you! Scott Blazanin blazanin@iastate.edu

[1] J.T. Burns, J. Boselli, Effect of plate thickness on the environmental fatigue crack growth behavior of AA7085-T7451, International Journal of Fatigue. 83 (2015) 253–268. doi:10.1016/j.ijfatigue.2015.10.020.

[2] L. Mueller, L. Suffredini, D. Bush, ALCOA 7085 Forgings: 7th Generation Structural Solutions, 1130cc.Com. (2006). https://www.1130cc.com/forums/attachment.php?attachmentid=485073&d=1471292 095 (accessed March 19, 2021).

[3] J.A. Neely, Correlation of stress intensity range with deviation of the crack front from the primary crack plane in both hand and die forged aluminum 7085-T7452., thesis, 2019.

[4] W. Tayon, R. Crooks, M. Domack, J. Wagner, A.A. Elmustafa, EBSD study of Delamination fracture IN AL–LI alloy 2090, Experimental Mechanics. 50 (2008) 135–143. doi:10.1007/s11340-008-9202-9.

[5] K.T. Venkateswara Rao, R.O. Ritchie, Mechanical properties of Al–Li alloys Part 1 Fracture toughness and microstructure, Materials Science and Technology. 5 (1989) 882–895. doi:10.1179/mst.1989.5.9.882.

[6] ASTM E399-20a Standard Test Method for Linear-Elastic Plane-Strain Fracture Toughness of Metallic Materials, ASTM Compass. (2021). https://doi.org/10.1520/E0399-20A (accessed March 19, 2021).

[7] S. Kalyanam, A.J. Beaudoin, R.H. Dodds, F. Barlat, Delamination cracking in advanced aluminum–lithium alloys – Experimental and computational studies, Engineering Fracture Mechanics. 76 (2009) 2174–2191. doi:10.1016/j.engfracmech.2009.06.010.

[8] K.-S. Sohn, S. Lee, N.J. Kim, In situ observation of microfracture processes in an 8090 Al-Li alloy plate, Materials Science and Engineering: A. 163 (1993) 11–21. doi:10.1016/0921-5093(93)90573-w.

[9] M.C. Messner, A.J. Beaudoin, R.H. Dodds, Mesoscopic modeling of crack arrestor delamination in Al–Li: primary crack shielding and T -stress effect, International Journal of Fracture. 188 (2014) 229–249. doi:10.1007/s10704-014-9957-1.

[10] M.C. Messner, A.J. Beaudoin, R.H. Dodds, An interface compatibility/equilibrium mechanism for delamination fracture in aluminum–lithium alloys, Engineering Fracture Mechanics. 133 (2015) 70–84. doi:10.1016/j.engfracmech.2014.11.003.

[11] K.T. Venkateswara Rao, R.O. Ritchie, Mechanical properties of Al–Li alloys Part 2 Fatigue crack propagation, Materials Science and Technology. 5 (1989) 896–907. doi:10.1179/mst.1989.5.9.896.

[12] M.C. Messner, A.J. Beaudoin, R.H. Dodds, A grain boundary damage model for delamination, Computational Mechanics. 56 (2015) 153–172. doi:10.1007/s00466-015-1164-z.

[13] ASTM E1820-20b Standard Test Method for Measurement of Fracture Toughness, ASTM Compass. (n.d.). https://doi.org/10.1520/E1820-20B (accessed July 7, 2021).