

Center for Advanced Non-Ferrous Structural Alloys An Industry/University Cooperative Research Center

Project 36E-L: In-Situ Characterization of Microstructural Evolution During Simulated Additive Manufacturing in Model Alloys

Semi-annual Spring Meeting April 2022

- Student: Brian Rodgers (Mines)
- Faculty: Amy Clarke (Mines)
- Industrial Mentors: Joe McKeown (LLNL), Saryu Fensin (LANL), Edwin Schwalbach (AFRL), Neil Carlson (LANL)
- Other Participants: Joe McKeown (LLNL), Alain Karma (Northeastern Univ.)

ORADOSCHOOLOFMINES.

U.S. DEPARTMENT OF

Iowa State Un

Office of

Science

Project 36E-L: In-Situ Characterization of Microstructural Evolution During Simulated Additive Manufacturing in Model Alloys

 Student: Brian Rodgers (Mines) Advisor(s): Amy Clarke (Mines) 	Project Duration PhD: September 2019 to Dec 2023
 <u>Problem:</u> Aerospace components are difficult to produce conventionally, but the effects of additive manufacturing (AM) on microstructural evolution are not understood enough to replace conventional manufacturing. <u>Objective:</u> Develop an understanding of solidification behavior in model alloys under AM conditions by <i>in-situ</i> characterization. <u>Benefit:</u> Microstructural control for additive manufacturing of aerospace components. 	 <u>Recent Progress</u> Completed residency at LANL for LRGF program TEM of AI-Ag DTEM samples

Metrics			
Description	% Complete	Status	
1. Literature review	70%	•	
2. Analysis of APS beam line data	95%	•	
3. Analysis of Dynamic Transmission Electron Microscopy (DTEM) of rapid solidification	75%	•	
4. Simulation of experimental conditions	60%	•	
5. Complementary ex-situ characterization	70%	•	

Project overview

- Basic energy sciences funding to visualize microstructure development during rapid solidification
- Desire to predict microstructures formed during additive manufacturing
- Funding also provided by LRGF program, which requires two residencies

Dendrite orientation transition (DOT)

- Phenomena where preferred growth orientation changes with alloy composition
- Attributed to changes in anisotropy of solid-liquid interfacial energy
- Fundamental reasons for interfacial energy change not well understood yet

SEM backscatter

Down zone bright field

211 zone axis SADP

Predicting DOT

- Desire to predict microstructure with phase field
- Requires knowing the values for the interfacial energy profile
- Extremely difficult to find experimentally, modeling is required

"A parametric study of morphology selection in equiaxed dendritic solidification", G. Kim, T. Takaki, Y. Shibuta, K. Matsuura, M. Ohno, *Comp. Mat. Sci.*, 2019

Molecular Dynamics (MD) fundamentals

- Simulations handling ten of thousands to millions of individual atoms/molecules
- Not an atomistic method, quantum effects and electronic structure ignored
- Interaction between atoms approximated using potentials

Molecular Dynamics (MD) fundamentals

- Simulations handling ten of thousands to millions of individual atoms/molecules
- Not an atomistic method, quantum effects and electronic structure ignored
- Interaction between atoms approximated using potentials

Dynamic simulations

- Atoms are allowed to move
- Necessary for all simulations not taking place at absolute zero
- More computationally expensive
- Simulation needs time to equilibrate

Calculating melting point

- Multiple methods exist, two phase coexistence technique chosen
- Solid and liquid in contact equilibrated to some fixed temperature
- System then held under constant enthalpy
- Interface movement and temperature change serve as signals

Iterative nature of melting point calculation

- An individual melting point simulation does not give the melting temperature
- Series of simulations required for guesses to converge on the actual value
- Can analyze as a response surface with y intercept being the melting point
- Determining the entire response surface is inefficient
- Want a method that produces low error bars with minimal iterations

- Named after LAMMPS and VASP
- Python based software made at LANL to semi-automate MD and atomistic simulations
- LAVA can do each of the simulation types shown thus far (and more!)
- Tested and validated each of those simulation types

LAVA melting point calculation

- Converge to melting point with a relative change based method
- Can be fast, but faces three issues
 - Error bars are not necessarily true
 - Failure to converge for some potentials
 - Noise affects convergence rate

Failure to converge

- Method relies on magnitude of changes
- Assumes size of change is always proportional to distance from melting point
- Some potentials have small changes between input and output temperature

Noise effect on convergence

- Thermal noise will always exist in MD simulations
- Magnitude of noise is inversely proportional to number of atoms
- Adding more atoms than needed to reduce noise is an expensive solution

Implementing bisection method

- Bisection method only depends on the sign of changes
- Number iterations controlled by starting interval and desired tolerance, and is consistent

Improvement with bisection method

- Both cases with convergence issues function now
- Averaging out final ten temperature values to reduce noise effects as well

Lava benefits to potential development

- Method to develop MD potentials with machine learning exists at LANL
- Can create the potential needed for the Al-Ag system
- Needs testing for training and validation, LAVA can help

Gantt Chart

Challenges & Opportunities

- Generate MD potential needed
- Predict DOT through interfacial energy anisotropy with phase field
- Further TEM analysis
- High quality publications

Thank you! Brian Rodgers brodgers@mines.edu