Program: MS, August 2022 to August 2024

[1] https://www.istockphoto.com/photos/aluminum-scrap

COLORADOSCHOOLOF**MINES**.

Methodology

Characterize the Composition of the Aluminum Waste Stream

Perform Thermodynamic Simulations and Microstructure Development Modeling to Design **Useful Compositions**

Produce Wire Feedstocks for Additive Manufacturing Using Wire Mill

Make Wire Arc Additive Manufacturing Builds to Validate Alloy Design

[3] C.K. Hillier, "Powder-Cored Tubular Wire Development for Electron Beam Freeform Fabrication," Masters of Science Thesis, Metallurgical and Materials Engineering, Colorado School of Mines, 2010.

Expected Outcomes

• New aluminum alloys that are based on the composition of the waste stream demonstrating the potential of incorporating sustainability into the alloy design process

• Assessment of using wire consumables to facilitate high scrap utilization in feedstocks for

IOWA STATE UNIVERSITY

