I/UCRC Executive Summary - Project Synopsis	Date: April 2022
Center/Site: CANFSA/Colorado School of Mines	
Tracking No .:62B: Maximizing Scrap Recycling by Designing Cu Tolerant Steel Compositions	E-mail : hgeerlings@mines.edu
	Phone: (805) 754-6622
Center/Site Director: CANFSA/M. Kaufman/P. Collins/A. Clarke	Type: (Continuing)
Project Leader: Henry Geerlings, Lionel Promel	Proposed Budget: CANFSA
Project Description : This project aims to increase the amount electric arc furnace (EAF) steel products by expanding the tolera such as copper and tin. At high enough concentrations, residuals iquid at the steel-scale interface due to rejection from the oxide and subsequent cracking within the austenite during hot working thermomechanical processing (TMP) routes and corresponding d amount of residual copper within EAF steels while mitigating hot and decreased energy consumption for steel suppliers and produ-	nce of hard to remove residual elements can cause enrichment of copper-rich layer, causing grain boundary penetration g, i.e. "hot shortness". By modeling amage, this work intends to broaden the shortness, leading to increased savings
Experimental plan : Material for the four EAF steel products (locarbon bar, and high carbon wire) is being procured from indust assessed as a function of residual element composition for sever Gleeble thermomechanical simulations, dilatometry, and hot rolli medium carbon bar material with copper concentration ranging f nave been machined and dilatometry samples are currently bein processing parameters, and hot shortness assessments will be u be used to establish correlative relationships and predictive mod	ry partners. Hot shortness damage is to be al relevant processing routes, including ng. This process has begun for existing rom 0.21 – 0.38 wt.%. Gleeble samples g prepared. Compositional makeup, sed to populate a database that can then
Related work elsewhere : Environmental and techno-economic nave been published out of University of Cambridge. The effects and silicon, have been studied and published from Carnegie Melo Colorado School of Mines quantified the relationship between oxis n the Gleeble. This last study is in fact where the medium carbo	of alloying additions such as nickel, tin, on University. Previous work here at dation time/temperature on hot shortness
How this project is different : While many studies have focus or oxidation studies within a specific steel alloy, this project is m ranging from scrap supply chain analysis and casting, all the way weldability, hardening, annealing behavior) and predictive mode of carbon compositions and product forms.	ore holistic in approach, with a scope y to subsequent processing (e.g.
Milestones for the current proposed year: Draft review pap design of experiments for steel products. Verify experimental res	
Deliverables for the current proposed year : Procure remain Gather dilatometry and Gleeble results from medium carbon bar and process featurization for modeling efforts.	
How the project may be transformative and/or benefit so copper permissible in EAF recycled steels will drastically lower be manufacturing by avoiding existing energy-intensive methods, ir	oth cost and carbon footprint of steel
Research areas of expertise needed for project success: Industry that can be emulated on Gleeble. ThermoCalc and liquid	
Potential Member Company Benefits: Hot shortness is not n reduced cost and pollution for steel producers, this work may sp generally while establishing data best practices for similar studie	eak to liquid metal embrittlement more
Progress to Date: Medium carbon barstock obtained, chemically analyzed, and machined for dilatometry and Gleeble TMP simulations. Gleeble experimental setup in the works. Medium carbon plate obtained by Vallourec, chemical analysis under way. Literature review ongoing, with review paper scaffolded.	
Vallourec, chemical analysis under way. Literature review ongoir	