Center/Site: CANFSA/Colorado School of Mines	
Tracking No.:57: Aluminum for H ₂ Service	E-mail : afreund@mines.edu
	Phone: (805) 231 - 6036
Center/Site Director: CANFSA/S. Mathaudhu/K. Clarke/A. Clarke	Type: (Continuing)
Project Leader: Adam Freund	Proposed Budget: \$240,000 CANFSA and Leveraged
Project Description : Hydrogen embrittlement afflicts alum lifetime. A fundamental understanding of this phenomenon is greater insight into its workings can help to enhance resistar	s not completely understood and gaining
Experimental plan : Cast and wrought aluminum will be coperformed to create a baseline. This will be accomplished the strain rate and cyclic fatigue testing) and microstructural charand XRD). Samples will then be subjected to hydrogen charanydrogen embrittlement effects. Samples will then be tested	rough mechanical testing (consisting of slow aracterization (consisting of EBSD, EDS, SEM, ging of various lengths of time to elicit
Related work elsewhere : Previous studies have investiga through experimentation and simulation, to isolate the prima has been conducted to ascertain the effects of aging on hydr hydrogen embrittlement on fatigue.	ary embrittlement pathways. Further research
How this project is different: Few studies have examined nearly pure aluminum in as-cast and plastically deformed m deformed aluminum to investigate the fundamental effects of pathways it takes when dislocation density is incredibly high	aterial. This extends to severely plastically of embrittlement due to hydrogen and the
Milestones for the current proposed year : Further litera method, cyclic fatigue and slow strain rate testing apparatus cast aluminum.	
Deliverables for the current proposed year : Microstruct baseline samples; Investigation of hydrogen embrittlement e amplitude on both wrought and cast samples.	
How the project may be transformative and/or benefi embrittlement of aluminum alloys can improve hydrogen sus ultimately increase part lifetime and capabilities.	
Research areas of expertise needed for project succes load frame, cyclic fatigue tester, SEM, EBSD, EDS, XRD, and analyzer.	
Potential Member Company Benefits: Enhanced underst of wrought and cast aluminum alloys.	tanding of hydrogen embrittlement in the scop
Progress to Date: Gaps in knowledge base concerning alun been identified. An experimental setup has been chosen and and mechanical testing. Microstructural characterization tech have been chosen and sourced.	detailed that will allow for hydrogen charging

organizations. Ideally, the tool is completed and shared in advance of IAB meetings to help enable rational decision making.