

Center for Advanced Non-Ferrous Structural Alloys An Industry/University Cooperative Research Center

Project 59-L: In-situ Visualization of Microstructure Evolution in Metallic Alloys under Additive Manufacturing Conditions

Semi-annual Spring Meeting **April 2022**

- Student: Oliver Hesmondhalgh (Mines) •
- Faculty: Amy Clarke (Mines)
- Industrial Mentors: J. McKeown (Lawrence Livermore National Laboratory)
- Other Partners: Alain Karma (Northeastern University), A. Saville (Mines), B. Rodgers (Mines)

Center Proprietary – Terms of CANFSA Membership Agreement Apply

Project 59-L: In-situ Visualization of Microstructure Evolution in Metallic Alloys under Additive Manufacturing Conditions

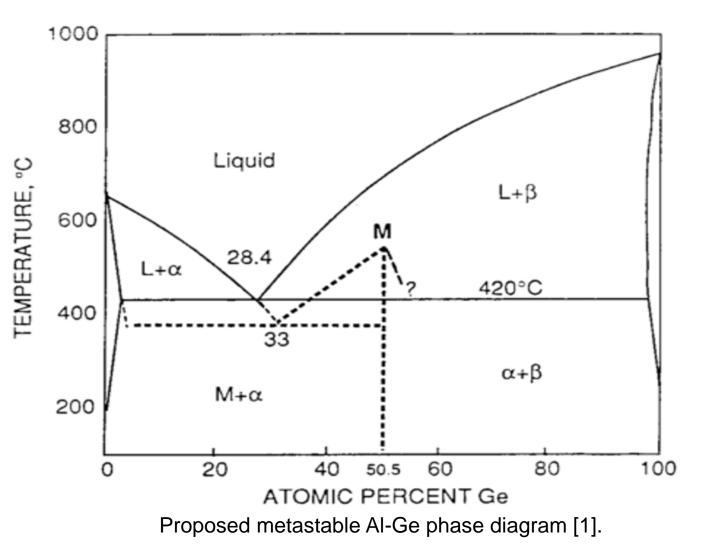
•	Student:	Oliver	Hesm	nondha	algh (Mir	nes)
				/	`	

- Advisor: Amy Clarke (Mines)
- <u>Problem</u>: Microstructure evolution during metallic additive manufacturing (AM) is not well understood, making alloy design and control of material properties difficult.
- <u>Objective:</u> Characterize microstructures during simulated AM and after complex thermal cycling. Inform phase field modeling of rapid solidification dynamics.
- <u>Benefit</u>: Microstructure predication and control under AM conditions and insights into alloy design for AM matched to AM processes.

Recent Progress

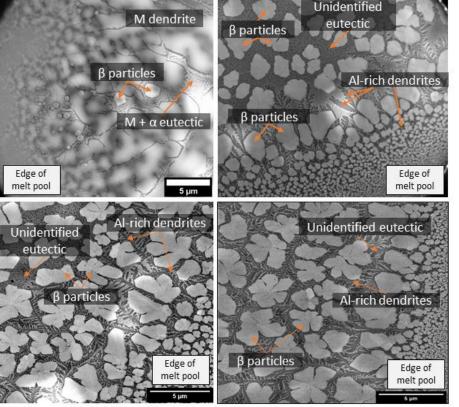
 Developed manual image analysis process to estimate solidification velocities from dynamic transmission electron microscopy (DTEM) data.

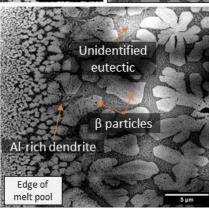
Project Duration PhD: August 2021 to May 2025


- Al-Si solidification velocities measured to inform phase field modeling of grain competition.
- AI-Ge DTEM and ex-situ microscopy analyzed to understand metastable phase formation.

Metrics							
Description	% Complete	Status					
1. Literature review	25%	•					
2. In-situ imaging of AI alloys during simulated AM with DTEM and/or at the Advanced Photon Source (APS) at Argonne National Laboratory (ANL)	0%	•					
3. Microstructure characterization of AI alloys after simulated AM	20%	•					
4. Complex thermal cycling of Ti alloys and heat-treatments with dilatometry	10%	•					
5. Electron microscopy of novel Ti alloy microstructures produced under AM conditions	0%	•					

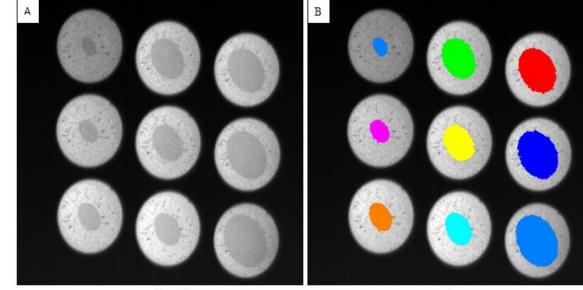
Center Proprietary – Terms of CANFSA Membership Agreement Apply


Proposed Metastable Phase Diagram for AI-Ge with Rapid Solidification



Ex-situ Analysis of Al-Ge after Rapid Solidification

- Ex-situ HAADF TEM images of ٠ melt pools from AI-Ge DTEM samples of differing compositions (~46-76 at.% Ge)
- Metastable monoclinic phase ٠ found as dendrites and as a eutectic with α -Al.
- Additional work required to identify ٠ some regions of interest.



CENTER FOR ADVANCED

NON-FERROUS STRUCTURAL ALLOYS

Grain Competition in AI-Si during Rapid Solidification

С 9 8 (7) 6

- A) Non-local means filter (Avizo).
- B) Segmented melt pools using adaptive threshold tool (Avizo).
- C) Outlines of melt pools used to measure solidification velocity (ImageJ).

Challenges & Opportunities

- TEM with nanoscale crystallographic mapping with ASTAR at Mines
 - Will provide additional microstructure characterization
- Manual image analysis process provides estimates of solidification velocities
 - Automate and improve the accuracy of these measurements
- Prepare first peer-reviewed journal manuscript

Thank you! Oliver Hesmondhalgh hesmondhalgh@mines.edu

References

[1] T. Laoui, M.J. Kaufman. Nonequilibrium Behavior in the Al-Ge Alloy System: Insights into the Metastable Phase Diagram, Metallurgical Transactions A. 22 (1991) 2141-2152.