Center Proprietary – Terms of CANFSA Membership Agreement Apply

Student: James Frishkoff (Mines)

_ORADOSCHOO

- Faculty: Dr. Amy Clarke & Dr. Kester Clarke (Mines)
- Industrial Mentors: Bruce Antolovich (ATI), Hayley Brown (SFSA), Steve Jansto (CBMM), Tanya Ros (Arcelor Mittal)

MINES

IOWA STATE UNIVERSITY

Semi-annual Spring Meeting

April 2022

Center for Advanced **Non-Ferrous Structural Alloys** An Industry/University Cooperative Research Center

Project 55: Fe-Containing Multi-Principal Element Alloys for Protective Structures

•	Student: James Frishkoff (Mines) Advisor(s): Amy Clarke, Kester Clarke (Mines)	Project Duration PhD: January 2021 to June 2025 (December 2022 current scope)
•	<u>Problem:</u> TRIP/TWIP MPEAs currently rely on costly high alloy content, and composition dependence not yet well understood. <u>Objective:</u> Achieve TRIP/TWIP & strength-ductility combinations in Co-lean MPEAs via experimental methods and high-throughput thermodynamic modeling. <u>Benefit:</u> Increasingly high strength-ductility combinations desired in many sectors, including vehicle protective structures.	 <u>Recent Progress</u> Alloy downselect completed - 7 1st choice alloys + backups Arc melting of bulk samples of selected new alloys Design of experiment for microstructure evolution study Identified heat treatments for new alloys & ATI baseline alloys Characterization of new & baseline alloys initiated
•	<u>Benefit:</u> Increasingly high strength-ductility combinations desired in many sectors, including vehicle protective structures.	 Identified neat treatments for new alloys & ATT baseline alloy Characterization of new & baseline alloys initiated

Metrics					
Description	% Complete	Status			
1. Literature review	70%	•			
2. ThermoCalc, PanDat & LAMMPS modeling	85%	•			
3. Obtain industrial baseline material	100%	•			
4. Alloy downselect	90%	•			
5. Gleeble experiments on downselected alloys and industrial reference material	0%	•			

Industrial Relevance

- TRIP & TWIP MPEAs may combine high ductility & tensile strength as well as high work-hardening rates
- High strength-ductility combinations correlate to high deformation energy absorption applications include automotive frames & ballistic protection
- Previous TRIP/TWIP MPEAs rely on cobalt content ≥10%
- Reduction of Co content important to reduce cost
- Mechanical data at varied temperatures, strain rates important for building processing maps; also helps predict high-rate impact behavior

Center Proprietary – Terms of CANFSA Membership Agreement Apply

The Problem Space

Problem	Threat	Protection	Solution		
Military ground/air platforms need armor/protective structuresPlatforms are weight- constrained	Increasing lethality of threats requires improved protective capabilities	Protection scales with weight "Weight is the penalty we pay for having nice things"	Higher performance armor materials Better performance at the same weight, or the same performance at a lower weight		

Performance Metrics for Protective Structures

Wants and needs:

- Yield & Dynamic Flow Stress (quasistatic up to 10⁴ s⁻¹)
- Ultimate Tensile Strength
- Strain to Fracture
- Work Hardening Rate
- Shear Strain Localization
 Resistance
- Surface Hardness
- Weldability

I. Crouch, *The Science of Armour Materials*, Elsevier (2017). Reproduced from A. Doig, *Military Metallurgy*, Maney Publishing: London (1998)

Steel Example: Austenite/Martensite Mixtures Create Desirable Property Combinations

Ye et al, Materials Today 2011

Program Goals & Gates – Year 1

- 1. Literature review to guide alloy recipes to be simulated
- 2. Use thermodynamic simulation to design alloys likely to be successful during year 2 trials
- 3. Perform characterization of effect of experimental TMP on Datalloy HP

Industry Sponsor Baseline Alloys - ATI

- Three alloys from industry sponsor ATI
- Processing & mechanical behavior references for specific property/chemistry spaces
- ATI 188 Co-base high-temp austenitic alloy; high work-hardening; TRIP?
- A286 Legacy NiCr high-temp austenitic steel; γ' precipitate strength; TRIP?
- Datalloy HP Highly alloyed steel; quasi-MPEA

Alloy Design Concepts

Basic factors:

20 (°)

80

100

120

30 µm

TWIP

High-entropy alloy

(40 at% Mn)

60

40

Intensity (arbitrary units)

- Metastability (TRIP)
- Deformation twinning (TWIP)
- Solid solution strengthening

Z. Li et al, Sci Rep 2017

High-entropy alloy

(45 at% Mn)

CANFSA

Thermodynamic Screening – T₀ & Strain-Induced Martensitic Transformations

J.A. Copley, MS Thesis, Colorado School of Mines, 2020

CANFSA

NON-FERROUS STRUCTURAL ALLOYS

CENTER FOR ADVANCED

Thermodynamic Screening – T₀ & Strain-Induced Martensitic Transformations

Software

T/T0 in Fe₅₀Mn₃₀Cr₁₀Co_(10-X)M_X

Solid Solution Strength Modeling in MPEAs

- MPEAs considered to have high SSH significant size, modulus misfit effects
- Modified Toda-Caraballo (2015) model using "effective atomic radii" (Coury 2018)
- "TC-EARS" model has best-in-class predictivity of MPEA SSH
- Easily implemented in Python using phase comp inputs from Thermocalc

Alloy Design Concepts

Basic factors:

Ti/Al=0.6

- Metastability (TRIP)
- Deformation twinning (TWIP)
- Solid solution strengthening

Microstructural features:

- Limit brittle IMs (σ , μ , χ phases)
- γ' precipitate strengthening
- Other precipitates (carbides, Fe₂SiTi)
- GB pinning precipitates, Nb
- Overaged precipitates (reduce ASB)

Left: F. Haftlang et al, Scripta Mater 2021 Far left:

of CANFSA Wembership Agreement Apply

Literature Guided Design for Precipitation CANFSA Fe₂SiTi

Fe₆₅Ni₁₅Co₈Mn₈Ti₃Si–Haftlang et al. 2021

Center Proprietary – Terms of CANFSA Membership Agreement Apply

Literature Guided Design for Precipitation ______CANF? Fe₂SiTi

CAN

ION-FERROUS STRUCTURAL ALLOYS

Literature Guided Design for Precipitation CAN γ'/L1₂

• v' atranathanad TDI	D accieted ermor	400 a 1247 • A4	1.4 de [7]
Composition	Max γ' %	Sigma phase	Other Precipitates
Fe ₅₈ Ni ₂₅ Al ₁₀ Mn ₈ Ti ₄ C _{2.}	4 15% - 330°C	None	<i>η</i> -Ni ₃ Ti (5%)
Fe ₄₅ Ni ₂₈ Cr ₈ Mn ₈ Al ₅ Ti ₆ Nk	o _{.25} 28% - 225°C	Present @ all γ' T, ~20%	η-Ni ₃ Ti (26% @ 500°C)
(FeNi) ₆₇ Cr ₁₅ Mn ₁₀ Al ₃ Ti ₅ N	b _{.25} 32% - 350°C	Present @ all γ' T, ~35%	η-Ni ₃ Ti (26% @ 550°C)
Caveat t <u>experiment</u> fo	o precipitation moc or accurate growth for Year 2 of t	leling in MPEAs: re model inputs – Th his project	equire is is a goal
γ' L2 ₁ 0.2μm Ti/Al=0.6 Ti/Al=1 CAINESA SPRING IVIE ETING – APRIL 2022	Ti/Al=1.7 Center Proprietary – Terms of CANFSA	(FeN Membership Agreement Apply	$i)_{67}Cr_{15}Mn_{10}Al_{8-x}Ti_{x}$ (x=3-5 at.%)

Alloy Design Progress

CANFSA SPRING MEETING - APRIL 2022

Center Proprietary – Terms of CANFSA Membership Agreement Apply

Alloy Design Progress

Candidate MPEA #1 - Fe_{55.6}Ni₂₅Mn₈Al₅Ti₄C_{2.4}

- $Fe_{55.6}Ni_{25}Mn_8Al_5Ti_4C_{2.4} \sigma$ -free γ '-strengthened FCC MPEA with predicted matrix metastability
- Age hardening with higher peak age hardness than ATI A286 reference alloy
- Ductility cold rolled >50% with no cracking

Fe_{55.6}Ni₂₅Mn₈Al₅Ti₄C_{2.4}Characterization • 48hr age, 540°C

Ti EDS map

Ni EDS map

20 um

Conclusion: age hardening is happening but do not yet know what the precipitates are; Tirich but no Ni, AI = not γ ' or η as predicted by Thermo-Calc

CANFSA SPRING MEETING – APRIL 2022

50 um

Center Proprietary – Terms of CANFSA Membership Agreement Apply

ATI Baseline Alloys Status

• Heat treatment, sample prep & etchant procedures identified for Datalloy HP

Center Proprietary – Terms of CANFSA Membership Agreement Apply

Arc Melt Furnace Status

- Installed & commissioned December 2021
- Currently functional and producing samples – project risk reduction
- Chemistry analysis samples sent to 3rd party lab to assess O, N pickup, Mn fade
- In process of buying add'I molds e.g plate

CANFSA

Year 2 Roadmap

- Arc melter production of candidate alloys (slide 9)
- Produce & characterize desired microstructures
- Mechanical testing multiple T, strain rates
- Assess failed samples to understand microstructure deformation mechanism performance links

CANFSA SPRING MEETING - APRIL 2022

Gantt Chart

Acknowledgements

- This program is sponsored by the Defense Logistics Agency Troop Support, Philadelphia PA and the Defense Logistics Agency Information Operations, J68, Research & Development, Ft. Belvoir, VA.
- Special thanks is also given to ATI Specialty Materials for providing test materials.
- Particular thanks also go to Dr. Krista Limmer at DEVCOM Army Research Laboratory.

References

- 1. I. Crouch, *The Science of Armour Materials*, Elsevier (2017)
- 2. A. Doig, *Military Metallurgy*, Maney Publishing: London (1998)
- 3. D.K. Matlock and J.G. Speer, "Design considerations for the next generation of advanced high strength steels", *Proceedings of The 3rd International Conference on Advanced Structural Steels*, Gyeongju, Korea, 2006, pp. 774-781
- 4. Y.F. Ye, Q. Wang, J. Lu, C.T. Liu, Y. Yang. "High-entropy alloy: challenges and prospects", *Materials Today*, 2011, 19(6):349-362
- 5. Z. Li, C.C. Tasan, H. Springer, B. Gault, D. Raabe, "Interstitial atoms enable joint twinning and transformation induced plasticity in strong and ductile high-entropy alloys", *Scientific Reports*, 2017, 7:40704
- 6. G.Bertoli, L. Otani, A.J. Clarke, C. S. Kiminami, F.G. Coury, "Hall–Petch and grain growth kinetics of the low stacking fault energy TRIP Cr40Co40Ni20 multi-principal element alloy", *Applied Physics Letters* 119, 061903 (2021)
- 7. Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, C.C. Tasan, "Metastable high-entropy dual-phase alloys overcome the strength-ductility tradeoff", *Nature*, 2016, 534:227-230
- 8. J.A. Copley, Prediction and Observation of Transformation-Induced Plasticity Behavior in CoCrNi Multi-Principal Element Alloys with In-Situ Synchrotron X-Ray Diffraction, MS Thesis, Colorado School of Mines, 2020
- 9. C. Varvenne, A. Luque, W.A. Curtin, Theory of strengthening in fcc high entropy alloys, *Acta Materialia* 118 (2016) 164–176.
- I. Toda-Caraballo, P.E.J. Rivera, R.D del Castillo, Modelling solid solution hardening in high entropy alloys, *Acta Materialia* 85 (2015) 14-23.
- 11. F.G. Coury, K.D. Clarke, C.S. Kiminami, M.J. Kaufman, A.J. Clarke, High Throughput Discovery and Design of Strong Multicomponent Metallic Solid Solutions, *Scientific Reports* 8 (2018) 1–10.

References

- 12. F. Haftlang, P. Asghari-Rad, J. Moon, A. Zargaran, K.A. Lee, S.J. Hong, H.S. Kim, "Simultaneous effects of deformation-induced plasticity and precipitation hardening in metastable non-equiatomic FeNiCoMnTiSi ferrous medium-entropy alloy at room and liquid nitrogen temperatures", *Scripta Materialia* 2021 114013
- 13. Y.L. Zhao, T. Yang, J.H. Zhu, D. Chen, Y. Yang, A. Hu, C.T. Liu, J.J. Kai, "Development of high-strength Co-free high-entropy alloys hardened by nanosized precipitates," *Scripta Materialia* 148 (2018) 51–55.

Center for Advanced **Non-Ferrous Structural Alloys** An Industry/University Cooperative Research Center

IOWA STATE UNIVERSITY

Supplementary Slides

Industry Sponsor Baseline Alloys - ATI

ATI 188

Limiting Chemical Composition of ATI 188™ Alloy (AMS 5608 Specification Limits for UNS R30188)				
Element	Weight Percent			
Carbon	0.05 – 0.15			
Manganese	1.25 max			
Silicon	0.20 – 0.50			
Phosphorus	0.020 max			
Sulfur	0.015 max			
Chromium	20.00 - 24.00			
Nickel	20.00 - 24.00			
Tungsten	13.00 – 16.00			
Lanthanum	0.02 - 0.12			
Boron	0.015 max			
Iron	3.00 max			
Cobalt	Remainder			

CANFSA CENTER FOR ADVANCED NON-FERROUS STRUCTURAL ALLOYS

Datalloy HP

Composition Range (UNS N08830)								
Element	Wt. %	Element	Wt. %					
Carbon	0.015	Manganese	3.0 - 6.0					
Phosphorous	0.035	Sulfur	0.010					
Silicon	1.00	Nickel	29.0 - 34.0					
Chromium	20.0 - 24.0	Molybdenum	4.5 - 6.5					
Copper	0.50 - 2.00	Cobalt	0.50 - 3.50					
Tungsten	0.20 – 1.80	Nitrogen	0.20 - 0.55					
Iron	balance							
Maximum % unless a range is indicated.								

A286

Chemical Composition of ATI A286™ Alloy													
	С	Mn	Si	S	Р	Cr	Ni	Fe	Мо	Ti	AI	в	v
wt. %, min.	-	1.0	-	-	-	13.5	24.0	Bal.	1.0	1.90	-	0.003	0.10
wt. %, max.	0.08	2.0	1.0	0.015	0.025	16.0	27.0	-	1.5	2.35	0.35	0.010	0.50

Industry Partner – ATI Specialty Materials

Added Capability

- 25 & 50 lb. vacuum melted ingots
- VAR/ESR for cleanliness
- Industrial thermomechanical processing & heat treatment

Baseline Alloys

- ATI 188 Co-base high-temp austenitic alloy; high workhardening; TRIP?
- A286 Legacy NiCr high-temp austenitic steel; TRIP?
- Datalloy HP Highly alloyed steel; quasi-MPEA

Composition	Range (UN	S N08830)

Element	Wt. %	Element	Wt. %				
Carbon	0.015	Manganese	3.0 - 6.0				
Phosphorous	0.035	Sulfur	0.010				
Silicon	1.00 Nickel		29.0 - 34.0				
Chromium	20.0 - 24.0	Molybdenum	4.5 - 6.5				
Copper	0.50 - 2.00	Cobalt	0.50 - 3.50				
Tungsten	0.20 – 1.80	Nitrogen	0.20 - 0.55				
Iron	balance	Datallov HP					
Datanoy in							

aximum % unless a range is indicated.

Datalloy HP *T/T₀* = 0.13 (FCC→BCC)

Modified Olson-Cohen SFE Algorithm

SFE, Temperature & Strain Rate Effects on Deformation Mechanism

Curtze, S., and V. T. Kuokkala. "Dependence of Tensile Deformation Behavior of TWIP Steels on Stacking Fault Energy, Temperature and Strain Rate." Acta Materialia 58, no. 15 (September 1, 2010): 5129–41. https://doi.org/10.1016/J.ACTAMAT.2010.05.049.

Adiabatic Shear Banding & Microstructure

- Some evidence that aging affects ASB formation, morphology
- Zhang et al. (*J Mater Sci* June 2020) ASBs in Al-Zn-Mg-Cu wider in overaged vs peak
- Wider ASB → higher critical strain/strain rate to form (Xue et al., Acta 44 1996)
- Peak age vs overage different substructure in dynamic loading → diff shear localization behavior
- Torsion Kolsky best way to assess
- Also evidence of ASB dissolution of γ' (Colliander et al. *Phil Letters* Sept 2020)

