

Center for Advanced Non-Ferrous Structural Alloys An Industry/University Cooperative Research Center

Project 43-L: Thermodynamics of Refractory Alloys

Semi-annual Spring Meeting

April 2022

- Student: Bobby Puerling (Mines)
- Faculty: Amy Clarke (Mines), Jonah Klemm-Toole (Mines)
- Industrial Mentors: Andy Deal (KCNSC), Wes Everhart (KCNSC), Noah Philips (ATI), Andrew Kustas (SNL)

This work was funded by the Department of Energy's Kansas City National Security Campus which is operated and managed by Honeywell Federal Manufacturing Technologies, LLC under contract number DE-NA0002839.

Center Proprietary – Terms of CANFSA Membership Agreement Apply

Unclassified Unlimited Release NSC-614-4476, 4/2022

Project 43-L: Thermodynamics of Refractory Alloys

 Student: Bobby Puerling (Mines) Advisor(s): Amy Clarke (Mines), Jonah Klemm-Toole 	Project Duration Master's: Jan. 2020 to August 2022
 <u>Problem:</u> Gaps exist in the thermodynamic databases where refractory alloys are concerned. <u>Objective:</u> Compile thermodynamic data for compositions of interest, assess the phase stability of MoNbTa with heat treatments, and characterize microstructures. <u>Benefit:</u> Improve databases for thermodynamic predictions. 	 <u>Recent Progress</u> Additional heat treatments at 1700°C are completed and samples are being analyzed Second nesting doll diffusion chamber heat treatment trial completed

	Metrics		
	Description	% Complete	Status
	1. Literature review	95%	•
	2. Comparison of published phase diagrams to Thermo-Calc predicted phase diagrams	100%	•
	3. Create heat treatment method utilizing DICTRA and Scheil simulations	100%	•
	4. Perform heat treatment, microstructural characterization, and assess phase stability	75%	•
	5. Input experimental data into Thermo-Calc and compare new predictions to experimental data	5%	•
C	ANFSA SPRING MEETING – APRIL 2022 Center Proprietary – Terms of CANFSA Membership Agreement Apply	Unclassified U NSC-614-447€	Inlimited Release

Background

- HEAs/MPEAs/CCAs (High Entropy Alloys/Multi-Principal Element Alloys/Complex Concentrated Alloys) popular for research during last 15 years
- Growing need for advanced structural metallic alloys capable of ultrahigh temperature performance in extreme environments
 - Recent research into MPEAs consisting of only, or primarily, refractory metals (RMPEAs)
- Limited knowledge of refractory alloys beyond binaries
 - Extremely high melting temperatures lead to experimental difficulties
- Fabrication of RMPEAs challenging
 - Need for discovery/development of RMPEAs with capability to be fabricated (some room temperature ductility) while maintaining high temperature strength (thermomechanical processing)
 - Need for discovery/development of RMPEAs for additive manufacturing

Diffusion Couples

- Pure Ta with MoNb binaries
- Melting Temperatures
 - Mo = 2623 °C
 - Nb = 2477 °C
- Minimal solidification segregation

Diffusion Couples

CANFSA SPRING MEETING – APRIL 2022

Center Proprietary – Terms of CANFSA Membership Agreement Apply

Unclassified Unlimited Release NSC-614-4476, 4/2022 5

Diffusion Couples

- Apply 2kN compression
- Ramp to 1200 °C over 4 min
 - Compress 1/4mm during ramp
- Hold at 1200 °C for 30 min
 - Compress 1mm during hold
- Other sample sets
 - Apply 2kN compression
 - Attempted ramp to 1200 °C over 4 min
 - Thermocouples failed at ~900 °C

6

Heat Treatment

- 500h @ 1700°C in static Ar
 - 100h segments
- Nb7.5Ta and Nb30Mo witness samples
 - One each pulled every 100h
- Three diffusion couple sample sets
 - 1st: interface ground with SiC before joining in gleeble
 - 2nd and 3rd: interface ground with AlO before joining in gleeble
 - 3rd sent to KCNSC for analysis
 - No discernable difference between the sample sets

Ta-Mo, Ta-Mo10Nb, Ta-Mo30Nb 500h @ 1700°C in static Ar

Ta-Nb50Mo, Ta-Nb30Mo, Ta-Nb10Mo 500h @ 1700°C in static Ar

Mo-Nb7.5Ta 500h @ 1700°C in static Ar

CANFSA SPRING MEETING – APRIL 2022

Center Proprietary – Terms of CANFSA Membership Agreement Apply

Unclassified Unlimited Release NSC-614-4476, 4/2022 10

Ta-Mo EDS Line Scans 500h @ 1700°C in static Ar

CANFSA SPRING MEETING - APRIL 2022

Ta-Nb30Mo EDS Line Scan 500h @ 1700°C in static Ar

Tantalum Carbide at Diffusion Couple Interface

- Ta likes C more than Mo and Nb
- Mo does not like C
- Hypothesis
 - C diffuses faster in Nb than Ta
 - Ta takes C from MoNb side of diffusion couple
 - Not enough C in high Mo binaries to form tantalum carbide at interface
- Need to verify diffusivity of C in Nb and Ta

Ta-Mo Denuded Zone EDS Line Scan 500h @ 1700°C in static Ar

Takeaway: Denuded zone has same composition as bulk Ta.

CANFSA SPRING MEETING – APRIL 2022

Center Proprietary – Terms of CANFSA Membership Agreement Apply

СК

Ta-Mo Denuded Zone EBSD 500h @ 1700°C in static Ar

Takeaway: Denuded zone is not recrystalization.

CANFSA SPRING MEETING – APRIL 2022

Additional Heat Treatment

- 68h @ 1700°C in flowing Ar
 - Attempted 100h
- Nb30Mo and Nb7.5Ta
 - Compare to witness samples from previous heat treatment
- No oxides or carbides present
- Nitrogen present

Nb30Mo Flowing vs Static Ar

68hrs @1700C in flowing Ar

100hrs @1700C in static Ar

CANFSA SPRING MEETING – APRIL 2022

Nb30Mo EDS Line Scan 68h @ 1700°C in flowing Ar

Takeaway: Dark areas are high in N.

CANFSA SPRING MEETING – APRIL 2022

Nb7.5Ta Flowing vs Static Ar

68hrs @1700C in flowing Ar

100hrs @1700C in static Ar

Nb7.5Ta EDS Nitrogen Map 68h @ 1700°C in flowing Ar

Takeaway: Dark areas are high in N.

CANFSA SPRING MEETING – APRIL 2022

Gantt Chart

Challenges & Opportunities

- Challenges so far
 - Heat treatments
 - Hot press had vacuum issues that took multiple weeks to fix
 - Finding furnace for long term heat treatments
 - Oxygen, carbon, and nitrogen contamination
 - Juggling a baby and research responsibilities
- Opportunities
 - Developing process for heat treating refractories alloys at Mines
 - Spending a lot of time with my daughter

Thank you! Bobby Puerling rppuerling@mines.edu

References

- [1] O. N. Senkov, D. B. Miracle and K. J. Chaput, "Development and exploration of refractory high entropy alloys—A Review," Journal of Materials Research, vol. 33, no. 19, pp. 3092-3128, 2018.
- [2] O. A. Waseem, J. Lee, H. M. Lee, and H. J. Ryu, "The effect of Ti on the sintering and mechanical properties of refractory high-entropy alloy TixWTaVCr fabricated via spark plasma sintering for fusion plasma-facing materials," Materials Chemistry and Physics, vol. 210, pp. 87–94, May 2018.
- [3] C.-C. Juan et al., "Enhanced mechanical properties of HfMoTaTiZr and HfMoNbTaTiZr refractory high-entropy alloys," Intermetallics, vol. 62, pp. 76–83, Jul. 2015.
- [4] D. B. Miracle, O. N. Senkov, J. M. Scott, G. B. Wilks, and Air Force Research Lab Wright-Patterson Afb Oh Materials And Manufacturing Directorate, "Mechanical Properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 Refractory High Entropy Alloys (Postprint)," May 2011.
- [5] Z. . Han et al., "Effect of Ti additions on mechanical properties of NbMoTaW and VNbMoTaW refractory high entropy alloys," Intermetallics, vol. 84, pp. 153–157, May 2017.
- [6] F. G. Coury, M. Kaufman, and A. J. Clarke, "Solid-solution strengthening in refractory high entropy alloys," Acta Materialia, vol. 175, pp. 66–81, Aug. 2019.
- [8] H. Mehrer, N. Stolica and N. A. Stolwijk, "2.2 The self-diffusion tables," in *Diffusion in Solid Metals and Alloys*, Vols. Landolt-Bornstein Group III Condensed Matter 26, 1990, pp. 34-66.
- [9] W. F. Gale and T. C. Totemeier, "Diffusion in Metals," in *Smithells Metals Reference Book*, 8th ed., 2004, pp. 73-100.
- [10] F. G. Coury et al., "Phase equilibria, mechanical properties and design of quaternary refractory high entropy alloys," *Materials & design*, vol. 155, no. C, pp. 244–256, 2018, doi: 10.1016/j.matdes.2018.06.003.

Nb7.5Ta Witness Samples 1700°C in static Ar

CANFSA SPRING MEETING – APRIL 2022

Nb7.5Ta EDS Spot Scans 100h @ 1700°C in static Ar

Takeaway: O and C contamination.

CANFSA SPRING MEETING – APRIL 2022

Center Proprietary – Terms of CANFSA Membership Agreement Apply

Smart Quant Results

Element	Weight %	Atomic %	Error %			
Witness Samples Nb7.5Ta 100hrs Area 3 EDS Spot 1						
СК	7.63	23.36	17.64			
ОК	21.52	49.48	10.84			
NbL	66.18	26.21	10.03			
TaM	4.68	0.95	19.43			
Witness Sam	oles Nb7.5Ta 10	0hrs Area 3 ED	S Spot 2			
СК	17.13	56.43	14.98			
ОК	4.53	11.2	17.5			
NbL	73.62	31.34	9.76			
TaM	4.72	1.03	21.84			
Witness Samples Nb7.5Ta 100hrs Area 3 EDS Spot 3						
СК	6.38	31.97	21.19			
ОК	3.08	11.61	19.03			
NbL	83.4	54.05	9.68			
TaM	7.14	2.38	13.77			

Unclassified Unlimited Release NSC-614-4476, 4/2022

Nb30Mo Witness Samples 1700°C in static Ar

CANFSA SPRING MEETING – APRIL 2022

Center Proprietary – Terms of CANFSA Membership Agreement Apply

CANFSA

NON-FERROUS STRUCTURAL ALLOYS

CENTER FOR ADVANCED

Nb30Mo EDS Spot Scans 100h @ 1700°C in static Ar

Takeaway: O and C contamination.

CANFSA CENTER FOR ADVANCED NON-FERROUS STRUCTURAL ALLOYS

Smart Quant Results

Element	Weight %	Atomic %	Error %		
Witness Samples Nb30Mo 100hrs Area 8 EDS Spot 1					
СК	9.87	28.14	16.86		
NK	0.47	1.14	89.72		
ОК	21.26	45.51	10.88		
NbL	68.25	25.16	9.33		
MoL	0.15	0.05	99.99		
Witness Sam	ples Nb30Mo 10	0hrs Area 8 ED	S Spot 2		
СК	20	58.37	13.78		
NK	3.57	8.93	26.45		
ОК	2.13	4.68	25.75		
NbL	73.25	27.64	9.2		
MoL	1.05	0.38	87.29		
Witness Sam	ples Nb30Mo 10	0hrs Area 8 ED	S Spot 3		
СК	14.34	53.54	15.44		
NK	0.01	0.02	99.99		
ОК	2.38	6.68	20.3		
NbL	54.37	26.24	10.09		
Mol	28.9	13 51	14 91		

CANFSA SPRING MEETING – APRIL 2022

BSE Images of Diffusion Couples 420h @ 1700°C in static Ar

