Project 36H-L: Additive Manufacturing of Refractory Multi-Principal Element Alloys

Spring 2022 Semi-Annual Meeting Student: Megan Le Corre (Mines), Faculty: Amy Clarke (Mines), Industrial Mentors: TBD

O.N. Senkov et al., Intermetallics, 2011, 19:698-C.-C. Juan et al., Intermetallics, 2015, 62:76-83 Z.D. Han et al., Intermetallics, 2017, 84:153-157 F.G. Coury et al., Acta Materialia, 2019, 175:66-81

Recent Progress:

system at Mines

COLORADOSCHOOLOFMINES

Center Proprietary – Terms of CANFSA Membership Agreement Apply

- Develop machine-appropriate laser
 - Avoid keyhole mode melting
- Rosenthal solution for a Gaussian

$$\frac{Q(x + V_{b}t)^{2} + y^{2}}{D_{b}^{2} + 8\alpha t} - \frac{z^{2}}{4\alpha t}$$
$$\frac{1}{\sqrt{\alpha t} \cdot (D_{b}^{2} + 8\alpha t)} \cdot dt$$

$$\frac{1}{G_{x,y,z}^2} + G_z^2 \qquad G_{x,y,z} = \frac{\partial T}{\partial_{x,y,z}}$$

- Evaluate microsegregation in laser
- Evaluate relative extent of oxidation

- 10 µm
- Conduction mode track melt. J.D. Roehling et al., JOM, 2018, 70:1589-1597

Gaussian laser intensity profile. Image courtesy of Edmund Optics

Microsegregation in (MoTaW)_x(Nb)_{1-x}. Melia et al., Applied Materials Today, 2020, 19:100560

• The work was supported by the Department of the Navy, USA, Office of Naval Research, USA, under ONR award number N00014-18-1-2794. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Office of Naval Research.

IOWA STATE UNIVERSITY