

Center for Advanced Non-Ferrous Structural Alloys An Industry/University Cooperative Research Center

Project #36A-L: Microstructural Evolution in Titanium Alloys Under Additive Manufacturing Conditions

Semi-annual Spring Meeting April 12-14, 2022

- Student: Alec Saville (Mines)
- Faculty: Amy Clarke, Kester Clarke (Mines)
- Industrial Mentors: Adam Pilchak (MRL), S. Lee Semiatin (AFRL), Jessica Buckner & Andrew Kustas (SNL)

Center Proprietary – Terms of CANFSA Membership Agreement Apply

Other Participants: Sven Vogel (LANL), Adam Creuziger & Jake Benzing (NIST)

Project 36A-L: Microstructural Evolution in Titanium Alloys Under Additive Manufacturing Conditions

 Student: Alec Saville (Mines) Advisor(s): Amy Clarke (Mines) 	Project Duration PhD: 2018 - 2022
 <u>Problem</u>: Control of material properties in metallic additive manufacturing (AM) is difficult due to a lack of background knowledge on material evolution within AM production methods. <u>Objective</u>: Understand microstructural evolution of α + β and binary alloys under AM conditions. <u>Benefit</u>: Greater understanding of microstructural evolution in AM will inform predictive capabilities and improve performance of AM parts. 	 <u>Recent Progress</u> Publishing WAAM Ti-6AI-4V texture and microstructure work Correlating solid state and parent grain size texture- microstructure relationships to EBM-PBF and WAAM Ti-6AI-4V Mechanical testing of EBM-PBF Ti-6AI-4V specimens Collating research for PhD defense

Metrics			
Description	% Complete	Status	
1. EBM-PBF Ti-6AI-4V Microstructure, Texture, and Solidification	100%	•	
2. MAUD Rietveld Refinement Tutorial	100%	•	
3. EBM-PBF Elastic Modulus and Mechanical Testing	90%	•	
4. WAAM Ti-6AI-4V Microstructural and Texture Evolution	85%	•	
5. Ti-10-2-3 Parent Phase Reconstruction	75%	•	

CANFSA Spring Meeting-April 2022

Background and Previous Work

Challenges in AM – There Are Many Microstructural Control

D. Zhang, et al., Nature. 576 (2019) 91–95.

Y.N. Wang, J.C. Huang, Texture analysis in hexagonal materials, Materials Chemistry and Physics. 81 (2003) 11–26. <u>https://doi.org/10.1016/S0254-0584(03)00168-8</u>.

Microstructural Evolution Is Complex

Ductile but weak **Strong but brittle** 10 µm Center Proprietary - remis or CANFSA Wempersmp Age

Microstructural control is required during solidification AND in the solid state

Solidification Microstructure in AM

Adapted from, S. Kou, Welding Metallurgy, John Wiley & Sons, Inc., 2002.

P.A. Kobryn, S.L. Semiatin, Microstructure and texture evolution during solidification processing of Ti–6Al–4V, Journal of Materials Processing Technology. 135 (2003) 330–339.

Solid State Microstructure in AM: Ti-6AI-4V

B. McArthur, Effects of Thermal Processing Variations on Microstructure and High Cycle Fatigue of Beta-STOA Ti-6AI-4V, (2017), 82.

L1

Center Proprietary – Terms of CANFSA Membership Agreement Apply

Exploring Two Different Build Processes

Electron Beam Powder Bed Fusion

Directed Energy Deposition

Electron Beam Powder Bed Fusion

A.I. Saville, et al., Texture evolution as a function of scan strategy and build height in electron beam melted Ti-6Al-4V, Additive Manufacturing. 46 (2021) 102118.

Directed Energy Deposition

BD

Typical DED Ti-6AI-4V Microstructure

CANFSA Spring Meeting – April 2022

Typical DED Solid State Microstructures

Non-Typical DED Microstructure

Schmid Factors For A Thermal Stress

Recent Work

CANFSA Spring Meeting-April 2022

Center Proprietary – Terms of CANFSA Membership Agreement Apply

Quick Texture Crash Course

- Crystallographic texture
 - Preferential orientation of crystal planes
 - Modify material behavior
- Fiber texture
 - A ring of orientations around a real space vector

CANFSA Spring Meeting – April 2022

DED = Large β -Ti Grains

Do fiber textures indicate finer as-solidified grains?

Simulations

CANFSA **Comparing Simulations to DED Textures** CENTER FOR ADVANCED NON-FERROUS STRUCTURAL ALLOYS DED **Simulation** (110)(001)(110)(111)0 0 0 0 0 $(01\bar{1}2)$ 0 0 30° rotation

Single Grains Can't Form Fibers

Simulating Multi-Grain β -Ti Solidification

"The healthier option"

How Does This Affect α -Ti Orientations?

Continuing Our Multi-Grain Diet

CANFSA Spring Meeting – April 2022

Center Proprietary – Terms of CANFSA Membership Agreement Apply

Continuing Our Multi-Grain Diet

Center Proprietary – Terms of CANFSA Membership Agreement Apply

Texture-Microstructure Takeaways

What about the solid state microstructure?

Why Different Orientations?

Why Different Orientations?

Does Texture Impact Mechanical Properties?

Texture → **Mechanical Properties**

Influence of Texture and Microstructure on Mechanical Properties

Engineering Stress-Strain

CANF

True Stress-Strain

Texture and Mechanical Response: R

CANFSA CENTER FOR ADVANCED NON-FERROUS STRUCTURAL ALLOYS

Texture and Mechanical Response: D

42

Texture and Mechanical Response: L

Summary

- AM Ti-6Al-4V
 - Texture can be used as a marker of microstructural condition
 - Fiber texture = Finer as solidified β -Ti grains
 - Increased 45th Parallel orientations = Diffusional microstructures
 - Increased Equator orientations = Diffusionless microstructures
 - Orientations demonstrate noticeable influence on properties

Challenges & Opportunities

- Limited material for follow-up tensile tests
 - No duplicates
- Non-ASTM specimen size
 - Restricted volume available for testing

Project Timeline

Sample Production

EBM-PBF Ti-6AI-4V Neutron Diffraction

EBM-PBF Ti-6AI-4V EBSD and Characterization

WAAM Ti-6AI-4V Neutron Diffaction

WAAM Ti-6AI-4V EBSD and Characterization

Evaluating Mechanical Properties of EBM-PBF Ti-6AI-4V

Other Titanium Systems

Modelling Microstructural and Texture Evolution

PhD Qualifier Exam

Thank you for listening! Any questions, comments, or concerns?

Thank you Jake Benzing for all the EBSD help!

Alec Saville asaville@mymail.mines.edu

Extra Slides

Explaining DED Microstructures

A. Ducato, et al., An Automated Visual Inspection System for the Classification of the Phases of Ti-6Al-4V Titanium Alloy, Springer Berlin Heidelberg, Berlin, Heidelberg, 2013: pp. 362–369..

CANFSA Spring Meeting – April 2022

Center Proprietary – Terms of CANFSA Membership Agreement Apply

Such crack propagation was *not* observed in four-layer microstructure Why did cracking propagate so far through $\alpha + \beta$ colonies?

Center Proprietary – Terms of CANFSA Membership Agreement Apply

Colonies acted as super-highways for crack propagation

50

The Smoking Gun - Solidification

Why did the solidification conditions suddenly change?

CANFSA Spring Meeting – April 2022

1100

CANFSA Spring Meeting-April 2022

52

Colonies Are Expected In Fresh β -Ti

Why do we see near complete fracture ONLY in this region?

Kelly, S.M., Kampe, S.L., 2004. Microstructural evolution in laser-deposited multilayer Ti-6AI-4V builds: Part I. Microstructural

characterization. Metall and Mat Trans A 35, 1861–1867. https://dgi.org/10.1007/s11661-004-0094

CANFSA Spring Meeting-April 2022

Center Proprietary – Terms of CANFSA Membership Agreement Apply

The Third Smoking Gun – Crack Path

prismatic <*a*>, 3

FCANESA Spring Moneting WAprilo2022 stal plasticity a nalysis of inicro-deformatio Center Proprietany geterens calfy CANESA Memobacrahip Agreements Apply 468 (2012) 2509-2531.