

Center for Advanced Non-Ferrous Structural Alloys An Industry/University Cooperative Research Center

Project 31-L: Accumulative Roll Bonding of AI Sheets (AA 5083) Toward Low Temperature Superplasticity

Semi-annual Spring Meeting **April 2022**

- Student: Brady McBride (Mines, now ATI Specialty Materials)
- Advisors: Kester Clarke (Mines), Amy Clarke (Mines)
- Industrial Mentors: John Carpenter (LANL), Eric Payton (AFRL)

Project 31-L: Accumulative Roll Bonding of Al Sheets Toward Low Temperature Superplasticity

 Student: Brady McBride (Mines) Advisor(s): Kester Clarke (Mines) 	Project Duration PhD: September 2017 to December 2021
 <u>Problem:</u> Superplastic forming requires high temperatures and very low strain rates. <u>Objective:</u> Develop an in-depth understanding of how accumulative roll bonding affects temperature dependent strength and superplastic properties of AI alloys. <u>Benefit:</u> Low temperature superplasticity could result in reduced cost and cycle time due to reduced deformation temperatures and increased strain rates. 	 <u>Recent Progress</u> (Defended PhD thesis, December 2021) "Continuous recrystallization during annealing of AA 5083 produced by accumulative roll bonding (ARB)", <i>Metall. & Mater. Trans. A</i>, submitted February 2022. "The limits of low temperature superplasticity in AA 5083 produced by accumulative roll bonding (ARB)", <i>Metall. & Mater. Trans. A</i>, submitted March 2022. "Biaxial low temperature superplasticity in AA 5083 produced by accumulative roll bonding (ARB)", <i>J. Mater. Perform. Eng.,</i> submitted April 2022.

Metrics				
Description	% Complete	Status		
1. Develop ARB process with mitigated edge cracking	100%	•		
2. Identify optimal conditions for low temperature superplasticity through tensile testing	100%	•		
3. Characterize microstructure evolution with ARB processing and tensile deformation	100%	•		
4. Formalize limits for low temperature superplasticity based on kinetics of deformation	100%	•		
5. Characterize small-scale formability testing specimens	100%	•		

Industrial Relevance: Superplastic Forming

LightMetalAge

Aircraft lamp can housing

Barnes et al., Mat. Sci. Forum, 2003.

2018 Bentley Continental GT

LightMetalAge

Conventionally processed AA 5083:		
Grain size:	10 µm	
Temperature:	500°C	
Strain rates:	1 X 10 ⁻³ s ⁻¹	
Thinning ratios:	2.0	
Void fraction:	2%	

Industrial Relevance: Reduced Temperature Formability

Uniaxial tension

Δ*l* = 327% 25 mm ARBed (< 1 µm) After Before 250 °C, 0.001 s⁻¹

Biaxial bulge testing

250°C, 0.001 s^{-1*}

*load-controlled nominal strain rate

CANFSA SPRING MEETING – APRIL 2022

Project Overview & Milestones

Industrial Relevance

"Biaxial low temperature superplasticity..."

J. Mater. Perform. Eng.

"Mitigation of edge cracking..." rec

Microstructural

Engineering

J. Manuf. Proc.

"Continuous recrystallization..."

Metall. & Mater. A

"Limits of low temperature superplasticity..."

Metall. & Mater. A

Introduction: Superplasticity

Accumulative Roll Bonding (ARB)

Schematic of bonding interfaces after 3 ARB cycles.

Outcomes of ARB:

- laminate sheet
- interface development
- strain retention

Grain Refinement through ARB

in-situ recrystallization:

- submicron grain size
- large HAGB fraction

Evidence for <u>Continuous</u> Recrystallization

15 minute static anneal treatments

Effect of Partial Recrystallization on Tensile Response

ARBed condition

CANFSA SPRING MEETING – APRIL 2022

Effects of <u>Partial Recrystallization</u> on Tensile Response

Conclusions: Microstructural Stability

- 1. ARBed microstructure is submicron with large HAGB fraction.
- 2. Microstructure is resistant to <u>dis</u>continuous recrystallization due to large HAGB fraction.
- 3. Total tensile elongation decreases with extent of static annealing.

Identifying Deformation Mechanisms

The Significance of Grain Boundary Character

- possible solute segregation (Mg)

I.A. Ovid'ko et al., 2006.

CANFSA SPRING MEETING – APRIL 2022

Identifying Primary Deformation Mechanisms

Comparison to Grain Boundary Sliding Models

$$\dot{\varepsilon} = A \frac{D_0 G b}{kT} \left(\frac{b}{d}\right)^p \left(\frac{\sigma}{G}\right)^{\frac{1}{m}} e^{\frac{-Q}{kT}}$$

Grain boundary sliding models predict significantly lower strain rates

Modifications to Gifkins core-mantle model: 1. Grain boundary width $\approx 4\delta$ 2. Activation energy $\approx 0.5 Q_{GB}$

results in $10^2 - 10^3$ increase in diffusivity $[m^2/s]$

Conclusions: Uniaxial Tensile Performance

- 1. Grain boundary sliding occurs with <u>lower</u> activation energies than conventionally reported (84 *kJ/mol*).
- 2. Non-equilibrium HAGBs likely responsible for *increasing* grain boundary diffusion rates.
- 3. Partial static recrystallization leads equilibrium grain boundary structure.
- 4. Solute partitioning (Mg) to grain boundaries may contribute to enhanced solute drag at low temperatures and strain rates.

Biaxial Bulge Testing

Biaxial stress state

$$P = \frac{4s_o\sigma}{r} \cdot e^{-\varepsilon t} \sqrt{e^{-\varepsilon t} (1 - e^{-\varepsilon t})}$$

Pressure to deform at constant strain rate

Biaxial Bulge Testing Results

ARBed material demonstates biaxial superplasticity with:

lower temperatures
 lower forming pressures

*strain rates listed are anticipated values, not necessarily observed values

CANFSA SPRING MEETING - APRIL 2022

Comparison of Damage Accumulation

Mean void size \approx mean grain size

*tensile strain of bulk sample CANFSA SPRING MEETING – APRIL 2022

Formability of ARBed material

250°C, 0.001 s⁻¹, t_o/t_f = 1.6

Industrial Relevance: Superplastic Forming

LightMetalAge

Aircraft lamp can housing

Barnes et al., Mat. Sci. Forum, 2003.

LightMetalAge

ARB processed 5083:	
Grain size:	10 μm 1 μm
Temperature:	500°C 225°C
Strain rates:	1 x 10 ⁻³ s ⁻¹
Thinning ratios:	2.0 3.5
Void fraction:	2%

2018 Bentley Continental GT

Thank You!

Brady McBride <u>brady.mcbride@atimetals.com</u> Colorado School of Mines (former) ATI Specialty Materials (current)

Supplemental Slides

Grain Refinement (Brightfield TEM)

2 cycles

5 cycles

*observed at random location through-thickness

Grain subdivision, rotation and dislocation conglomeration lead to grain refinement (*"in-situ" recrystallization*)

CANFSA SPRING MEETING – APRIL 2022

1 cycle

3 cycles

4 cvcles

um

RD

TD

Grain Refinement (Inverse pole figure maps) CANFSA

Grain subdivision and rotation lead to grain refinement

1 cycle

15 minute Static Annealing Trials (EBSD)

CANFSA SPRING MEETING – APRIL 2022

15 minute Static Annealing Trials (XRD)

Annealing reduces intragranular orientation gradients leading to texture strengthening

Center Proprietary – Terms of CANFSA Membership Agreement Apply

Thinning Ratios

Mitigation of Edge Cracking

5083 5 ARB – No Constraint

McBride et al., J. Manu. Proc., 2010.

CANFSA SPRING MEETING – APRIL 2022

Scaling for Industry

100-ton Fenn Rolling Mill

133 mm (5.25") cold rolls100,000 lb capacity37 RPM single speed

Configurable for: 4-high cold rolling Hot rolling (200 °C) Rod rolling (25 mm to 10 mm)

How is ARB Processing Different from Conventional Rolling?

1. Redundant shear

With lubrication

Without lubrication

1mm

2. Consistent, through-thickness deformation

Recrystallized Microstructure after ARB Processing

Recrystallization does not seem to occur across bonding interfaces

Biaxial Bulge Testing: Results

225 °C, 0.0005 s^{-1*}

250 °C, 0.001 s^{-1*}

8.8 mm 14.0 mm 8.0 mm 10.0 mm 12.9 mm 12.3 mm ARBed (< 1 µm) Coarse grained (≈ 10 µm) 5.7 mm 5.8 mm 5.9 mm 5.1 mm 5.7 mm 6.8 mm

ARBed material exhibits biaxial superplasticity with lower temperatures and lower forming pressures

*strain rates listed are anticipated values, not necessarily observed values

CANFSA SPRING MEETING – APRIL 2022

Identifying Strain Rate and Temperature Limits

CANFSA SPRING MEETING – APRIL 2022

Strain Uniformity During Deformation

Significant strain localization after $\varepsilon = 0.75$ (e = 1.10)

Damage Accumulation

Significant strain-induced void growth (voids > 1 μ m) for ϵ > 0.75 (e > 1.1)

ε = 1.01

100 µm

Analysis of Bulge Test Specimens

References

[1] Y. Saito, H. Utsunomiya, N. Tsuji, and T. Sakai, "Novel ultra-high straining process for bulk materials—development of the accumulative roll-bonding (ARB) process," Acta Materialia, vol. 47, no. 2, pp. 579–583, 1999.

[2] R. M. Cleveland, A. K. Ghosh, and J. R. Bradley, "Comparison of superplastic behavior in two 5083 aluminum alloys," *Materials Science and Engineering A*, vol. 351, no. 1-2, pp. 228–236, 2003.

[3] N. Tsuji, K. Shiotsuki, and Y. Saito, "Superplasticity of ultra-fine grained Al-Mg Alloy by ARB," *Materials Transactions*, vol. 40, no. 8, pp. 765–771, 1999.

[4] Hsiao, I. C., and J. C. Huang. "Development of low temperature superplasticity in commercial 5083 Al-Mg alloys." *Scripta Materialia*, vol. 40, no. 6, pp. 697-703, 1999.

[5] Hsiao, I. C., and J. C. Huang. "Deformation mechanisms during low-and high-temperature superplasticity in 5083 Al-Mg alloy." *Metallurgical and Materials Transactions A*, vol. 33, no .5, pp. 1373-1384, 2002.