

Center for Advanced Non-Ferrous Structural Alloys An Industry/University Cooperative Research Center

Project 31-L: Accumulative Roll Bonding of Al Sheets Toward Low Temperature Superplasticity

Semi-annual Fall Meeting October 2021

IOWA STATE UNIVERSITY

- Student: Brady McBride (Mines)
- Faculty: Dr. Kester Clarke (Mines)
- Industrial Mentors: John Carpenter (LANL), Eric Payton (AFRL)

Project 31-L: Accumulative Roll Bonding of Al and Ti Sheets Toward Low Temperature Superplasticity

 Student: Brady McBride (Mines) Advisor(s): Kester Clarke (Mines) 	Project Duration PhD: September 2017 to December 2021
 <u>Problem:</u> Superplastic forming requires high temperatures and very low strain rates. <u>Objective:</u> Develop an in-depth understanding of how accumulative roll bonding affects temperature dependent strength and superplastic properties of Al alloys. <u>Benefit:</u> Low temperature superplasticity could result in reduced cost and cycle time due to reduced deformation temperatures and increased strain rates. 	 <u>Recent Progress</u> Identified temperature and strain rate limits for stable grain boundary sliding Quantified strain uniformity and cavitation damage during uniaxial superplasticity testing Completed biaxial bulge formability tests for two down-selected conditions based on uniaxial test results

Metrics			
Description	% Complete	Status	
1. Develop ARB process with mitigated edge cracking	100%	•	
2. Identify optimal conditions for low temperature superplasticity through tensile testing	100%	•	
3. Characterize microstructure evolution with ARB processing and tensile deformation	100%	•	
4. Formalize limits for low temperature superplasticity based on kinetics of deformation	75%	•	
5. Characterize small-scale formability testing specimens	0%	•	

- Project introduction
- Microstructural evolution prior to tensile testing
 - Grain refinement
 - Continuous recrystallization
- Tensile testing for superplasticity
 - Identifying optimal parameters
- Characterization of optimal conditions (225 °C, 0.0005 s⁻¹ and 250 °C, 0.001 s⁻¹)
 - Microstructural evolution
 - Strain uniformity
 - Cavitation damage
- Biaxial formability testing
- Future work

Industrial Relevance

After 5 ARB cycles of AA 5083:

Enhanced properties:

- Hall-Petch strengthening
- low temperature superplasticity

for sheet forming operations

Potential forming benefits:

- reduced operating temperature

- reduced cycle time
- reduced operating costs
- increased final part strength

Tsuji et al., *Acta Materialia*, 1999. Abu-Farha et al., *Int'l Journal of Sustainable Manufacturing*, 2008.

Microstructural Evolution Prior to Tensile Testing

Grain Refinement through Accumulative Roll Bonding

Mid-thickness grain morphology after 5 ARB cycles

in-situ recrystallization during processing leads to refined microstructure with with high HAGB fraction

HABG fraction, grain size saturates after 5 cycles

Average grain size:	243 nm x 66 nm
Average aspect ratio:	3.7
High angle grain boundary:	≈60 %

Center Proprietary – Terms of CANFSA Membership Agreement Apply

Continuous Static Recrystallization

15 minute static anneal treatments

CANFSA FALL MEETING - OCTOBER 2021

Center Proprietary – Terms of CANFSA Membership Agreement Apply

[011]

Identifying Optimal Parameters for Low Temperature Superplasticity

Requirements for Superplasticity: Grain Boundary Sliding

Effect of Partial Recrystallization on Low Temperature Superplasticity

Optimal Parameters for Low Temperature Superplasticity

Identifying Strain Rate and Temperature Limits

CANFSA FALL MEETING - OCTOBER 2021

Center Proprietary – Terms of CANFSA Membership Agreement Apply

Kinetics of Deformation Mechanisms

T ≥ 250 °C

Grain growth hinders grain boundary sliding

Lower temperatures require lower strain rates; Lower strain rates result in lower stresses;

Transition from D_{GB} to D_{Mg} for rate controlling mechanism

Characterization of Optimal Conditions

Strain Uniformity During Deformation

Significant strain localization after $\varepsilon = 0.75$ (e = 1.10)

Damage Accumulation

Significant strain-induced void growth (voids > 1 μ m) for ϵ > 0.75 (e > 1.1)

ε = 1.01

<u>100 μm</u> 16

Center Proprietary – Terms of CANFSA Membership Agreement Apply

Bulge Formability Testing

Biaxial Bulge Testing

Biaxial strain state

$$P = \frac{4s_o\sigma}{r} \cdot e^{-\dot{\varepsilon}t} \sqrt{e^{-\dot{\varepsilon}t}(1 - e^{-\dot{\varepsilon}t})}$$

Pressure to deform at constant strain rate

Proof-of-Concept for Low Temperature Formability

ARB processing can achieve high biaxial strains with lower temperatures and lower forming pressures

Gantt Chart

CANFSA FALL MEETING – OCTOBER 2021

Center Proprietary – Terms of CANFSA Membership Agreement Apply

Challenges & Opportunities

Biaxial bulge testing

- provides novel insight in biaxial formability
- collaboration with exchange student M. Ciemiorek working on cross accumulative roll bonding (CARB)

Biaxial bulge analysis

- complex analytical models with many variables

Thank you! Brady McBride bmcbride@mines.edu

Analysis of Bulge Test Specimens

225 °C, 0.0005 s⁻¹

23

Supplemental slides

Remaining Questions

- What causes the transition from D_{GB} to D_{Mg} controlled grain boundary sliding?
 - Why are lower strain rates less conducive for D_{GB} ?
 - Lower strain rates have lower STRESSES, the driving force for dislocation glide is LOWERED
 - Maybe look at dislocation velocity compared to strain rate?
 - Maybe look at effect of temperature and stress on dislocation velocity?
 - What does the effect of a threshold stress do/mean?
 - Dislocation climb still remains thermally activated
 - Higher activation energy for D_{Mg}, more sensitive to temperature
- Read paper on equilibrium grain boundary

Variability in total tensile elongations

Multiple necks leads to higher tensile elongations

80

70

60

Engr stress [MPa] 05 05 05

20

Grain Growth

CANFSA FALL MEETING – OCTOBER 2021

Center Proprietary – Terms of CANFSA Membership Agreement Apply

For tensile testing:

15 minute preheat used to equilibrate samples

[111]

Flow Curves for Low Temperature Superplasticity

References

[1] Y. Saito, H. Utsunomiya, N. Tsuji, and T. Sakai, "Novel ultra-high straining process for bulk materials—development of the accumulative roll-bonding (ARB) process," Acta Materialia, vol. 47, no. 2, pp. 579–583, 1999.

[2] R. M. Cleveland, A. K. Ghosh, and J. R. Bradley, "Comparison of superplastic behavior in two 5083 aluminum alloys," *Materials Science and Engineering A*, vol. 351, no. 1-2, pp. 228–236, 2003.

[3] N. Tsuji, K. Shiotsuki, and Y. Saito, "Superplasticity of ultra-fine grained Al-Mg Alloy by ARB," *Materials Transactions*, vol. 40, no. 8, pp. 765–771, 1999.

[4] Hsiao, I. C., and J. C. Huang. "Development of low temperature superplasticity in commercial 5083 Al-Mg alloys." *Scripta Materialia*, vol. 40, no. 6, pp. 697-703, 1999.

[5] Hsiao, I. C., and J. C. Huang. "Deformation mechanisms during low-and high-temperature superplasticity in 5083 Al-Mg alloy." *Metallurgical and Materials Transactions A*, vol. 33, no .5, pp. 1373-1384, 2002.