

Center for Advanced Non-Ferrous Structural Alloys An Industry/University Cooperative Research Center

Project 62B-L: Maximizing Scrap Recycling by Designing Cu Tolerant Steel Compositions

Semi-annual Fall Meeting October 2021

Faculty: A. Clarke, K. Clarke, J. Klemm-Toole, S. Seetharaman (Mines)

Industry Mentors: TBD

IOWA STATE UNIVERSITY

Project 62B-L: Maximizing Scrap Recycling by Designing Cu Tolerant Steel Compositions

- Student: Henry Geerlings (Mines)
- Advisors: A. Clarke, K. Clarke, J. Klemm-Toole, S. Seetharaman
- <u>Problem</u>: High residual-containing scrap limits the ability to remelt steels without adding carbon-intensive blast-furnace pig iron to dilute compositions.
- <u>Objective</u>: Better understand effects of residual elements on downstream processing and component performance to enable design of viable composition-processing combinations.
- <u>Benefit</u>: Increasing residual element tolerance in steel products will reduce amount of needed pig iron dilution and associated carbon footprint, while increasing utilization of steel scrap.

Project Duration

August 2021 to August 2024

Recent Progress

- Literature review under way
- Instrument training upcoming
- Project kickoff meeting 10/7
- Coursework under way

Metrics		
Description	% Complete	Status
1. Literature review	5%	•
2. Acquire and/or design materials	0%	•
3 Gleeble TMP and characterization.	0%	•
4. Thermodynamic modeling for alloy design	0%	•
5. Propose optimized compositions and processing pathways	0%	•

About Me

- B.S. Materials Science and Engineering (2015)
 - Emphasis in mechanics of materials and computational methods
 - Investigated Ti phase stability using MD, and developed algorithms for materials discovery

- M.S. Materials Science (2018)
 - Emphasis in applied mathematics and mechanics of materials
 - Researcher for ADAPT center developing high-throughput image analysis of SLM Inconel components and virgin vs. recycled powders

- Work Experience (2018 2021)
 - Materials Data Engineer for CoorsTek R&D
 - Developed data best-practices and various software tools and pipelines for ceramic formulation/processing data within R&D

Thank you!
Henry Geerlings
hgeerlings@mines.edu

Pubs (if relevant)

- [1] M. Poschmann, J. Lin, H. Geerlings, I. S. Winter, and D. C. Chrzan, "Strain-induced variant selection in heterogeneous nucleation of α -Ti at screw dislocations in β -Ti," *Phys. Rev. Materials*, vol. 2, no. 8, p. 083606, Aug. 2018, doi: 10.1103/PhysRevMaterials.2.083606.
- [2] M. de Jong, W. Chen, H. Geerlings, M. Asta, and K. A. Persson, "A database to enable discovery and design of piezoelectric materials," *Sci Data*, vol. 2, no. 1, p. 150053, Dec. 2015, doi: 10.1038/sdata.2015.53.