

Center for Advanced Non-Ferrous Structural Alloys An Industry/University Cooperative Research Center

IOWA STATE UNIVERSITY

Project 49-L: Microstructure-property relationships of additively manufactured Ti-5553

Semi-annual Fall Meeting October 2021

- Student: Andrew Temple (ISU)
- Faculty: Dr. Peter Collins (ISU)
- Industrial Mentors: KCNSC Honeywell FM&T (Camille Baker, Ben Sikora, Ben Brown, Seth White, Andy Deal)

Center Proprietary – Terms of CANFSA Membership Agreement Apply

Project 49-L: Microstructure-property relationships of AM Ti-5553

•	Student: Andrew Temple (ISU) Advisor(s): Peter Collins (ISU)	Project Duration PhD: January 2018 to May 2022
•	Problem: Microstructure-property relationships of heat treated AM Ti-5553 are currently not well understood.	 <u>Recent Progress</u> Completed initial SEM characterization and MIPAR
•	<u>Objective:</u> Develop a predictive yield strength model for AM Ti- 5553 similar to the equation developed for Ti-64	 Identified qualitative and quantitative microstructure-property
•	<u>Benefit:</u> The understanding of microstructure-property relationships as they relate to heat-treated AM Ti-5553. Enables future alloy and process design.	relationshipsStarted on dissertation writing

Metrics		
Description	% Complete	Status
1. Literature review	85%	•
2. Microstructural characterization	75%	•
3. Image analysis and quantification	75%	•
4. Dissertation writing	15%	•
5. PhD Final Oral Examination	0%	•

Heat treatments of L-PBF Ti-5553

Variables		Levels	
	Low	Mid	High
Annealing temperature (°C)	700	745	785
Cooling rate (°C/min)	5	50	500
Aging temperature (°C)	500	575	650
Beta transus is about 845°C			
Volume fraction alpha	Size of alpha	1	[™] ↑ Size and volume fractio

Heating/cooling rates of 5°C/min unless otherwise specified

Tensile testing of L-PBF Ti-5553

The influence of cooling rate

500°C/min Cooling Rate

700

500°C/min Cooling Rate

Microstructure-property relationships

S. A. Mantri et al., Tuning the scale of α precipitates in β-titanium alloys for achieving high strength. Scripta Materialia. 154, 139–144 (2018). https://doi.org/10.1016/j.scriptamat.2018.05.040

CANFSA FALL MEETING - OCTOBER 2021

Center Proprietary – Terms of CANFSA Membership Agreement Apply

Alpha phase fraction

Alpha-to-alpha inter-precipitate spacing

Yield strength predictions of L-PBF Ti-5553

1019

1089

925

1.147

0.1767

Solid solution – 793-847 MPa

CANFSA FALL MEETING – OCTOBER 2021

Mean free slip path – 89-313 MPa

Center Proprietary – Terms of CANFSA Membership Agreement Apply

Average

Max

Min

53.14

60.69

43.51

- Strength increases with shorter distance between alpha laths
- Strength increases with increased alpha phase fraction
- Base strength is set by solid solution strengthening (chemistry and phase fraction)

PhD Progress

Challenges & Opportunities

• Microstructural analysis and quantification

• Fine secondary alpha laths for prediction of yield strengths > 1150 MPa

Dissertation writing

Thank you! Andrew Temple ajtemple@iastate.edu