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Project 52-L: Data Driven Qualification 
(DDQ) Framework for Metals Additive 
Manufacturing (AM)

• Student: Charles Smith (Mines)
• Advisor: Jonah Klemm-Toole (Mines) 

Amy Clarke (Mines)

Project Duration
M.S. January 2021 to December 2022

• Problem: The range of equipment suppliers that use their own 
proprietary feedstock and process parameters makes each AM 
system and qualification protocol unique.

• Objective: Use a data driven qualification approach to form 
relationships across platforms and alloy systems using intelligent 
machine learning algorithms and physics-based modeling.

• Benefit: Accelerated qualification and adoption of AM parts into 
military vehicles.

Recent Progress: 

• Basic thermodynamic (heat transfer) modeling to model melt 
pool geometry and fusion characteristics has continued. 

• Simulations to model thermal gradients and heating 
characteristics has been furthered developed.

• Microstructure characterization has begun. 

Metrics

Description % Complete Status

1. Literature review 40% ●

2. Development of metallographic preparation techniques 90% ●

3. Preliminary thermodynamic modeling/simulations 50% ●

4. Microstructure Characterization 10% ●

5. Development of G (temperature gradient) and V (solidification velocity) diagram 0% ●
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Overview

• Proposed Project Methodology
• Modeling and Simulation

‒ Effects of laser powder bed fusion processing parameters on microstructure and defects in the as-built 
conditions

‒ Heat transfer/thermodynamic process maps to predict process windows
‒ Moving point heat source to model laser powder bed fusion processes

• Metallography and Characterization 
• Challenges & Opportunities
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Proposed Processing – Microstructure 
Mapping Methodology 

The map can predict the resulting microstructure (solidification + solid state transformation) 
if the solidification velocity and thermal gradient are known for a process.

J. Klemm-Toole, unpublished, 2020
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Process Parameters Effect on Build 
Properties 

• Optimal energy density (Ed0) of about 100-105 J/mm3 for 316L
‒ Results in the least porosity, good surface finish, and hardness

• 𝐸𝑑 < 0.5𝐸𝑑0 - reduction in density

• 0.5𝐸𝑑0 < 𝐸𝑑 < 0.7𝐸𝑑0 - inconsistent density

• 0.7𝐸𝑑0 < 𝐸𝑑 < 1.3𝐸𝑑0 - optimum processing

Increasing energy density leads to a decrease in porosity
A. Leicht et al, Materials Characterization, 2019
M. Zhang et al, Materials Science and Engineering A, 2017 

𝐸ௗ =
𝑃

𝑣 ∗ ℎ ∗ 𝑙
𝑊ℎ𝑒𝑟𝑒:
𝐸ௗ = total volumetric energy (J/mm3)
𝑃 = laser power (W)
𝑣 = scan speed (mm/s)
ℎ = hatch distance (mm)
𝑙 = layer thickness



6Center Proprietary – Terms of CANFSA Membership Agreement ApplyCANFSA FALL MEETING – OCTOBER 2021

Process Parameters on Build Density

Optimal process 
parameters 
combination 
would be figures 
c, e, and g. 

Negligible changes in porosity are observed above an energy density of ~ 98 J/mm3

A. Leicht et al, Materials Characterization, 2019
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Process Parameters on Grain Orientation 

Higher energy densities are correlated with coarser microstructures likely leading to lower 
strengths in the as-built condition

A. Leicht et al, Materials Characterization, 2019
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Defect Maps

By using process parameters along with predicted melt pool geometry, it is possible to 
predict and control defects and solidification behavior

J. Zhu et al, Additive Manfacting, 2021

• Each region represents parameter sets that could experience 
solidification defects

• These maps were developed using the Rosenthal Model along 
criteria proposed through literature  
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Rosenthal Model

• Assumptions
‒ Thermophysical properties are 

temperature independent. 
‒ Scanning speed and power input are 

constant.
‒ Point heat source
‒ The heat transfer is governed purely by 

conduction.  

• The Rosenthal model predicts semi-
circular melt pool cross-sections.

The Rosenthal model predicts semi-circular melt pool cross-sections whose depths and 
widths are deeper and narrower respectively compared to many additive manufacturing 

techniques.P. Promoppatum et al, Engineering, 2017

𝑇 = 𝑇௢ +
λ𝑃

2𝜋𝑘𝑟
exp −

𝑉 𝑟 + 𝜉

2α
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Criteria for Defect Maps

• Balling:

గௐ

௅

ଶ

ଷ

• Lack of fusion:
௛

ௐ

ଶ ௧

௧ା஽

• Keyhole-induced pore formation:
∆ு

௛ೞ

஺௉

గ௛ೞ ఈ௩௔య

గ்್

೘்

Where:

• W = melt pool width

• D = melt pool depth

• L = melt pool length

• h = hatch distance

• t = layer thickness

• P = laser power

• a = beam radius

• v = scanning velocity

J. Zhu et al, Additive Manfacting, 2021

The solidification behavior and defect formation can be predicted using process 
parameters and melt pool geometry  
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Defect Map

Spot Size: 0.1 mm
Hatch Distance: 0.1 mm
Layer Thickness: 0.04 mm
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ABAQUS Simulations

• Simulates a single-track moving heat source on 
a 316L steel plate

• Uses a Goldak heat distribution to model a 
moving heat source

• Accounts for convection and radiation loss to 
the environment, but only conduction in the 
melt pool

• Possible to do more complex processes 
including material depositing, multi-passes, and 
different scanning strategies.

ABAQUS simulations are used to model thermal gradients and temperature histories 
during the build process 
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Goldak Distribution and ABAQUS Simulation 
Set Up

• Developed in 1984 by John Goldak for welds
• Aimed to expand on the Rosenthal model to 

overcome some of the limiting assumptions
• Model is based on a double ellipsoid 

configuration

The Goldak distribution was developed for larger melt pool geometries and the 
applicability to LPBF is being evaluated

J. Goldak et al, Metallurgical Transaction, 1984
Abaqus software documentation
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Example Simulations – Preliminary
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First 316L Build

• First build was designed 
to evaluate effects of 
part sizes and proximity 
of nearby builds on 
microstructure

• This build was done 
using baseline 
parameters from 3D 
Systems using the Mines 
DMP Flex 350
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Plate 1

• Plate 1 – 35 mm x 1.25 mm x 23.5 mm
• Plate 1 was isolated in the build and 

designed to assess the thinnest feature 
that would be made

• The top section or top layer would 
experience the smallest amount of 
remelting and reheating which would 
give the most meaningful results to 
compare to solidification models

• ABAQUS simulations were done to 
predict the thermal gradients and 
solidification velocity

23.5 mm

35 mm

1.25 mm



17Center Proprietary – Terms of CANFSA Membership Agreement ApplyCANFSA FALL MEETING – OCTOBER 2021

Plate 1 Melt Pool Analysis

• The melt pool dimensions were predicted 
using the Rosenthal model

• The melt pool is predicted, using the 
Rosenthal model, to have a width of 108 
µm and a depth of 34.4 µm

• Measurements show an average width of 
156 µm and an average depth 48 µm 
respectively

Discrepancies between Rosenthal model predictions and experiments are likely due to a 
combination of sectioning effects and the limiting assumptions in the model.
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Updated Defect Map 
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Simulation of Plate 1

Scale model of plate 1 from build 1 showing a moving heat source across the top layer
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Scaled Down Model of Plate 1

A scaled down model allows quicker simulations and a finer mesh
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Predictions of G and V

• The thermal gradient (G) and 
solidification velocity (V) can be 
calculated by observing the melt pool 
boundary 

• The nodal temperatures of the model 
were plotted at a set time

• The surface of the melt pool was also 
plotted

The next step is to overlay the melt pool surface with the nodal temperature plots and 
observe the movement of the solidification boundary to determine V and observe the 

thermal gradients across the solidification boundary to determine G.

Heat Source

Rastering Direction
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Progress

Coursework

Literature Review

Development of Metallographic Techniques

Abaqus Simulation

Microstructure Characterization

Development of GV Diagram

Master's Thesis
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Challenges & Opportunities

Thank you!
Charles Smith

ctsmith@mines.edu

• The defect maps should provide insight on ideal process parameters, but they do not provide 
insight on effects of component geometry and solidification conditions.

• Progress is being made with ABAQUS simulations, and more work needs to be done to simulate 
more complex situations.

• Other simulation programs such as SYSWELD and/or Flow3D will be evaluated to compare the 
thermal gradients and history.

• Metallography and melt pool analysis has begun
‒ Are there any particular microstructural features of interest to the sponsors (other than dendrite arm 

spacing, grain size, and grain morphology)?

• There are many other aspects of AM that these microstructure maps will not take into 
consideration.

‒ Are there any recommendations from the sponsors about critical variables or microstructure features that should 
be included?
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