

Center for Advanced **Non-Ferrous Structural Alloys** An Industry/University Cooperative Research Center

IOWA STATE UNIVERSITY

Project 44-L: Characterization of Particulate Materials Simulating High Explosives

Semi-annual Fall Conference October 2021

- Student: Max Wallace (Mines)
- Faculty: Dr. Amy Clarke and Dr. Kester Clarke (Mines)

Center for Micromorphic Multiphysics Porous and Particulate Materials Simulations with Exascale Computing Workflows, US DOE National Nuclear Security Administration (DOE/NNSA) Predictive Science Academic Alliance Program (PSAAP) III, NNSA Office of Advanced Simulation and Computing (ASC), in collaboration with Lawrence Livermore National Laboratory, Los Alamos National Laboratory, and Sandia National Laboratories

LORADOSCHO FMINES

Center Proprietary – Terms of CANFSA Membership Agreement Apply

Project 44-L: Characterization of Particulate Materials Simulating High Explosives

•	Students: Summer Camerlo (Mines), Max Wallace (Mines) Advisor(s): Amy Clarke and Kester Clarke (Mines)	Project Duration PhD: June 2021 May 2024 (Max)
•	 <u>Problem:</u> Mock high explosive (HE) deformation characteristics are relatively unknown in the pristine and recycled states. <u>Objective:</u> Perform processing and multiscale experiments on the quasi-static to dynamic mechanical response of mock HE to support a 5-year, multi-university exascale computing effort lead by CU Boulder. <u>Benefit:</u> Experimental data sets for a range of particulate material responses that will be used for model calibration, verification and validation. 	 <u>Recent Progress</u> Development of manufacturing methodology for recycled Mock HE Samples and model F50 sand/resin Compression stress/strain curves across varying rates for recycled MHE, pristine LANL-provided MHE and F50 embedded resin Investigation of strength differences, recycled vs pristine

Metrics				
Description	% Complete	Status		
1. Literature review	15%	•		
3. Processing of mock HE and making samples	40%	•		
4. CT imaging of mock HE and model samples	10%	•		
5. Mechanical properties and characterization of mock HE, intermediate rates	40%	•		
5. Mechanical properties and characterization of mock HE, high rates (APS, CHESS, TBD)	0%	•		

About Me

Lawrence Livermore National Laboratory

- B.S., Nuclear Engineering, UCB
- Started at CANFSA this May, 2021
- Returned to Academia after ~18yrs in Software and Startups, San Francisco
- Italian motorcycles, atomic tourism, and the technologic frontier

Guinness World Record, 2011

Thank you! Max Wallace wwallace@mines.edu