I/UCRC Executive Summa	ry - Project Synopsis	Date: October 2021
Center/Site: CANFSA/Colorado So	chool of Mines	
Tracking No .:30-L: Mechanisms of Grain Refinement in Laser Powder Bed Fusion of In-Situ Metal Matrix Composite 6061 Aluminum Alloys	Phone: (843) 618-7968	E-mail: <u>chloejohnson@mymail.mines.edu</u>
Center/Site Director: CANFSA/M. Kaufman/P. Collins/A. Clarke		Type: (Continuing)
Project Leader: Chloe Johnson		Proposed Budget: \$320,000
Inoculation presents a method to no While proof of concept studies have refinement mechanisms in these allo	s, which are prone to column of only cause grain refinement proven inoculation in alumir oys are not fully understood.	manufacturing (AM) is still limited, nar grain growth and solidification cracking nt, but also reduce solidification cracking. num alloys for AM to be viable, the grain This project proposes to explore grain turing Al 6061 alloys during AM processing
extensive in-situ and ex-situ charac	terization to understand how	Elementum 3D, will be investigated using v solidification conditions and composition alloy powder) impact grain refinement in
casting. However, only recently hav	e rapid solidification conditio e addressed inoculation in A	M, mechanistic understanding of grain
refinement in inoculated aluminum a alloy never before studied. This will	alloys during AM, as well as i be done by coupling novel ir ions and initial particle conce	derstand the mechanisms driving grain investigate an in-situ inoculated aluminum n-situ and ex-situ characterization to entrations in the alloy powder impact
alloys containing a variety of differe	nt starting reactive particle on nisms for each alloy during A	various particles will be completed for contents and correlated to other findings to M processing. Thesis writing and defense
was completed and is under review of solidification conditions on refiner	for publishing. Thermal grad ment was also completed. Ex contents has been partially c	ng on heat treatment of A6061-RAM alloys lient modeling for investigating the impact speriments to identify phases in alloys ompleted, particularly XRD and SEM n Al-Ti and A6061-RAM(Ti).
		ciety : Understanding grain refinement g approaches that can be used to evaluate
Research areas of expertise nee <i>in-situ</i> imaging; advanced electron		Solidification; microstructural development ssing; additive manufacturing.
	netallic alloys to help predict	wledge gained from this project will be and control final microstructures and ve manufacturing.
Advanced Photon Source at Argonne solidification velocities have been ex heat treatment on microstructural d	e National Laboratory. These tracted from the in-situ radi	n Al 6061 and A6061-RAM alloys at the samples have been characterized and ography. A study looking at the impact of med and completed. Investigation into the rted, with SEM and XPD being completed
for each alloy and TEM analysis part	ially completed and still und	

and its projects. It also enables stakeholders to discuss and decide on the projects that provide value to their respective organizations. Ideally, the tool is completed and shared in advance of IAB meetings to help enable rational decision making.