I/UCRC Executive Summary - Project Synopsis	Date: October 2021
Center/Site: CANFSA/Colorado School of Mines	
Tracking No .:31: Accumulative Roll Bonding of Al Sheets Toward Low Temperature Superplasticity	E-mail: bmcbride@mines.edu
	Phone: (503) 866-6530
Center/Site Director: CANFSA/M. Kaufman/P. Collins/A. Clarke	Type: (Continuing)
Project Leader: Brady McBride	Proposed Budget: \$240,000 CANFSA and Leveraged
Project Description : Accumulative roll bonding (ARB) is a sevent produce ultra-fine grain materials with a conventional rolling mile enhanced superplastic behavior at reduced temperatures and inco- potential to significantly impact the cost and processing time of s	I. Materials subject to ARB exhibit creased strain rates, which has the
Experimental plan : An ARB process will be developed at Color current equipment. The development of microstructures in 5XXX nvestigated. After an understanding of the microstructural devel samples will be tested for superplasticity, and optimization of pa starting microstructure) for enhanced superplasticity will be inve	aluminum using the ARB process will be lopment that occurs with this process, rameters (temperature, strain rate,
Related work elsewhere : The majority of previous work has a pertaining to ARB. Research has been conducted for the past dec development of the ARB process and processing parameters that	cade at Osaka University of Japan on the
How this project is different : Few studies have examined the materials produced by ARB. Recent developments have proven t n specific alloys, such as AI 5083, but have not comprehensively optimize the superplastic response. Microstructural stability of a unexplored.	he enhancement of superplastic behavior v studied tensile testing parameters to
Milestones for the current proposed year : Identify combina deliver an optimal low temperature superplastic response for the parameters to establish a proof-of-concept for biaxial formability	ARBed microstructure created. Use these
Deliverables for the current proposed year : Identify tempe temperature superplasticity based on kinetics of deformation me and reported in literature. Report on superplastic forming strains	chanisms that are realized in tensile tests
How the project may be transformative and/or benefit so will be developed with respect to multiple aspects (microstructur superplasticity, strain rate sensitivity) in 5XXX aluminum alloys. showcase the potential of ARB as a novel processing method and	al refinement, texture development, This will act as a detailed case study to
Research areas of expertise needed for project success: A cons) to roll-bond wider samples; EDAX's EBSD post-processing grain size and grain boundary misorientation of severely deformed	software NPAR to aid in data analysis of
Potential Member Company Benefits: Enhanced superplastic ncreased strain rate has the potential to decrease cycle time of Retention of submicron grain size after forming can also lead to a	forming operations while reducing costs.
Progress to Date: Completed tensile tests with three different strain of temperatures and strain rates to identify a few parameteral. This detailed analysis will be used to identify mechanistics superplasticity. Proof-of-concept biaxial bulge tests have been concernent uniformity and microstructural evaluation are superplayed.	eters combinations to investigate in more ally the limits of low temperature onducted at and evaluation in terms of
strain uniformity and microstructural evaluation are currently un	