

Center for Advanced **Non-Ferrous Structural Alloys** An Industry/University Cooperative Research Center

Project 37-L: Advanced Engineered Coatings with Extended Die Life for Tooling

Semi-annual Fall Meeting October 2021

- Student: Nelson Delfino de Campos Neto (Mines)
- Faculty: Andras Korenyi-Both, Stephen Midson, Michael Kaufman (Mines)
- Industrial Mentors: Paul Brancaleon (NADCA), Rob Mayer (Queen City Forging Co.)

Center Proprietary – Terms of CANFSA Membership Agreement Apply

Project 37-L: Advanced Engineered Coatings with Extended Die Life for Tooling

- Student: Nelson Delfino de Campos Neto (Mines)
- Advisor(s): S. Midson, A. Korenyi-Both, M. Kaufman (Mines)

Project Duration

PhD: August 2018 to July 2023

- <u>Problem:</u> Molten aluminum tends to solder to die faces during the die casting process. Lubricants are applied to the die to reduce soldering and adhesion, but the lubricant reduces part quality.
- <u>Objective:</u> Identify PVD coatings to be applied to die casting dies to prevent soldering. Understand the mechanisms involved with adhesion.
- <u>Benefit:</u> Increase die casting part quality, eliminate the use of lubricants, extend die life and reduce cost-per-part.

Recent Progress

- Performed controlled laboratory die casting experiments at The Ohio State University.
- Started industry die casting trial at Stellantis.
- Characterization on tested core pins.
- Published paper: "The Use of Coatings to Minimize Soldering and Eliminate the Need for Lubrication during Aluminum High Pressure Die Casting" at Transactions of the NADCA 2021 Die Casting Congress & Exposition.

Metrics						
Description	% Complete	Status				
1. Literature review and development of molten aluminum tests	100%	•				
2. Identification of the mechanisms that controls soldering and adhesion behavior	80%	•				
3. Identification of PVD coatings to avoid molten aluminum soldering and adhesion	80%	•				
4. Identification of PVD coatings durability to survive as long as the die casting dies (100,000 shots)	20%	•				
5. In-plant trials. Guidelines for depositing the coating system on die components/tooling	20%	•				

Industrial Relevance

- Reducing or eliminating lubricant spray will:
 - -Significantly **improve the quality** of the die castings
 - Reduce gas porosity and scrap
 - Allow castings to be used in higher performance applications

-<u>Reduce costs</u>

- Eliminate purchase costs for lubricants
- Reduce effluent clean-up costs
- Significantly extend die life

Improve productivity

• Faster cycle rates

Aluminum HPDC Tests

- Two sets of tests to find best PVD coatings for lube-free die casting
- Planned testing at The Ohio State University (OSU)
 - 250 ton Buhler die casting machine
 - Controlled laboratory test
 - Try to run lube-free
- Planned testing at Stellantis (Kokomo Die Casting Plant)
 - 3,000 ton commercial die casting machine
 - Run PVD coated core pins for 2,500 shots
 - Evaluate soldering of different PVD coatings
 - Evaluate soldering progression and coating life

Lube-free die casting trial at The Ohio State University

New Die Inserts (AICrN PVD Coated)

Ejector side

Cover side

Ejector side

Cover side

PVD AICrN Coating Characterization

Fe A|CrNR = 5 mmAICrN R = 8 mm AICrN R = 10 mm 8000 10000 H13 R = 5 mm H13 R = 8 mm H13 R = 10 mm 10000 8000

CANFSA

CENTER FOR ADVANCED

NON-FERROUS STRUCTURAL ALLOYS

CANFSA FALL MEETING – OCTOBER 2021

Center Proprietary – Terms of CANFSA Membership Agreement Apply

Casting Conditions

- A380 alloy (300 lbs)
 - Degassing prior to use (15 minutes N₂ gas)
 - Sample taken for composition measurement
- Thermal camera used to measure die temperature between shots
- Machine issues prevented use of optimized shot profiles*
- Molten A380 temperature was varied between 680-720 °C
- Heating oil temperature was varied between 200-290 °C
- Lube-free attempts
 - Start trial with normal lube, then decrease until lube-free
 - Attempt to run lube-free for a number of castings

Die Casting Operation – Shot Profile

A380	Al	Si	Fe	Cu	Mn	Mg	Cr	Ni	Zn	Ti
Day 1	85.90	8.29	0.98	3.12	0.20	0.20	0.034	0.049	1.02	0.061
Day I	85.70	8.45	0.95	3.15	0.20	0.21	0.035	0.048	1.06	0.062
D. 0	86.00	8.00	0.95	3.11	0.19	0.22	0.034	0.046	1.22	0.059
Day Z	85.80	8.12	0.94	3.20	0.19	0.22	0.034	0.047	1.23	0.058
Day 3	86.00	9.14	0.94	3.13	0.19	0.18	0.034	0.047	1.16	0.059

- Planned to run the desired plunger profile
 - Desired gate speed of 1,400 in/sec
 - Unable to adjust machine parameters
- Actual shot profile was inappropriate for these casting geometries
 - Gate speed of 2,665 in/sec (~2X desired)
 - High gate speed expected to exacerbate soldering

1st Trial at The Ohio State University May 12th, 2021 Thin plate die (Die #1)

First OSU Trial – Die #1 – (May 12th)

Cover side

Ejector side

- A380 alloy temperature at 680 °C
- Die pre-heating/cooling temperature at 200 °C

Ca	istings	# of die lube spray				
#	Quantity	cavity	runner	cover	shot block	
1 to 6	6		В	N		
7 to 11	5	3	3	3	3	
12 to 14	3	2	2	2	2	
15 to 17	17 3 1 1 1		1			
18 to 57	40	Lube-Free				

Successfully produced 40 lube-free castings

2nd Trial at The Ohio State University June 11th, 2021 Thin plate die (Die #1)

Second OSU Trial – Die #1 – (June 11th)

Cover side

Ejector side

Castings		Tempera	Condition	
#	Quantity	A380	Oil	Lube
1 to 5	5	680	200	BN, spray
6 to 25	20	680	200	
26 to 45	20	720	200	
46 to 65	20	720	230	
66 to 85	20	720	260	Lube-Free
86 to 122	37	720	290	

• Successfully produced 117 lube-free castings

Die #1 – Temperature Track

- Thermal camera was used to track die surface temperature between castings
- Die temperature increased and temperature better distributed during trial

Sticking Phenomena (Build-up)

- A few times casting ended up stuck to the tip of ejector pins
 - Flat tips of ejector pins are not well coated
- Build-up continuously appeared and disappeared after a few castings during the lube-free trial
- No evidence of build up developing to soldering was found in the coated inserts

3rd Trial at The Ohio State University June 22nd, 2021 Thicker plate die (Die #2)

Third OSU Trial – Die #2 – (June 22nd)

Ejector side

Mapping processing conditions for lube-free

- Successfully produced 56 lube-free castings
- Stopped due to machine malfunction

Castings		Tempera	Condition	
#	Quantity	A380	Oil	Lube
1 to 5	5	680	200	BN, spray
6 to 25	20	680	200	
26 to 45	20	720	200	Lube-Free
46 to 61	16	720	230	
-	-	720	260	
-	-	720	290	_

Results Die #2

- Casting sometimes stuck to tips of ejector pins, but almost no force needed to separate
- Flashing occurred due to spike in machine pressure during injection

Soldering Die #2

- Significant soldering developed on the uncoated shot block and shot block cover
- Did not prevent lube-free operation

CANFSA FALL MEETING - OCTOBER 2021

Die #2 – Temperature Track

- Thermal camera used to track die surface temperature between castings
- Die temperature increased and temperature was better distributed during trial
- Temperature on die #2 increased significantly more than on die #1
 - May have encouraged the observed soldering

ProCast Simulation – Die Temperature

Casting Quality Criteria - Die #1

Casting Quality Criteria - Die #2

- Castings without filling defects Castings with filling defects Build-up surface defects Excessive plunger lube
- As the die temperature increased
 - Higher percentage of castings without filling defects
 - Greater percentage of castings with build-up surface defect marks and with gas blistering

Testing at Stellantis (Kokomo Die Casting Plant)

Core Pin Soldering at Stellantis

Core Pins Chosen for Trial at Stellantis

- Die chosen for trial is a 9-speed torque converter (bell) housing
- Runs single cavity on a 3,000-ton die casting machine
- The two very similar core pins are shown on the right
 - Utilize internal water cooling
- Core pins with two surface finishes were PVD coated
 - Rougher draw-polish finish
 - Smoother diamond polish

Polished: Ra = 52 \pm 17 nm and Rz = 0.304 \pm 0.096 μ m

Draw finish: Ra = 326 \pm 27 nm and Rz = 2.904 \pm 0.240 μm

Metrics for the Stellantis Core Pin Tests

- Core pins placed in front of the gate
 - Critical position for soldering
- A week of aluminum die castings will be made to track steady-state soldering
 - Around 2,500 castings
- Core pins have two surface finishes
 - Draw-polish finish (rougher) and diamond polished (smoother)
- Steady-state soldering resistance of the various PVD coatings in two surface finishes will be evaluated using same techniques
 - Weight increase of the pins (due to soldered aluminum)
 - Percentage of the pins' surface covered with aluminum solder
 - Location of the solder on the pins
 - Metallography of the interface between the aluminum and the PVD coating
 - Characterized using the SEM or TEM

List of PVD Coatings for Stellantis Test

Туре	Composition	Supplier		
	TiAlVN	#1		
Lubricious high temperature oxides	AlCrVN	#1		
(coatings contain V and W)	VC	#1		
	CrWN	#3		
	Altin/BN	#2		
Lubricious compounds	CrN/BN	#2		
	Si-DLC	#1		
	Al ₂ O ₃	#1		
Stable oxides	ZrOC	#4		
	ZrOC/ZrO ₂	#4		
	AlCrCN	#5		
Nitrides	AlCrN	#5		
	AlCrN+	#6		
Carbides	CrC	#1		
Uncoated	Nitriding	Stellantis		
CANFSA FALL MEETING – OCTOBER 2021	Center Proprietary – Terms of CANFSA Membership Agreement Apply	*Received 28		

Pictures of the Tested Core Pins

Nitrided @ 2,500 shots

Si-DLC Coating @ 2,430 shots

Qualitative Grade and Quantitative Results

Coating	Coating Supplier	# of Shots	Stellantis Observations	Stellantis Grade	Mass change (5205)	Mass change (5215)	Surface Soldered (5205)	Surface Soldered (5215)
Nitrided	-	2500	Both cores soldered	D	N/A	N/A	46 ± 5 %	58 ± 5 %
Si doped DLC	#1	2430	Cores basically clean - no solder. Coating looks like it is intermittent.	A-	+ 0.20 g	+ 0.28 g	31 ± 9 %	38 ± 17 %
VC	#1	4469	Some light solder (cores destroyed)	B-	N/A	N/A	N/A	N/A
Al ₂ O ₃	#1	2572	Some solder (cores destroyed)	C+	N/A	N/A	N/A	N/A

Coatings Tribology (Al pin-on-disk)

- Si doped DLC showed the lowest COF
 - 0.16 ± 0.04
- Higher wear resistance may be related to better performance on the die casting trial

Summary & Conclusions

- Two dies coated with an AlCrN PVD coating and tested using a 250-ton die casting machine at OSU
 - Both dies ran in the lube-free condition (without the application of any die lubricant)
 - More than 200 lube free castings were produced.
- The temperature simulation on the dies matched the thermal camera measurements
 - Soldering developed at the hottest spots on the shot blocks and aluminum marks were observed inside the insert cavities.
- Aluminum build-up on the die surface occurred intermittently but did not result in soldering.
- Based on an analysis of the surface condition of the castings
 - Higher melt and die temperatures leaded to a greater percentage of castings experiencing build-up, surface defect marks, and with gas blistering.
- Casting trials at Stellantis conducted using coated core pins positioned directly in-front of the gate of a large commercial die casting
 - Core pin coated with Si-doped DLC coating exhibited the least amount of soldering.
- The results of both trials have shown that coatings can be used to minimize soldering and eliminate die lubricant in aluminum HPDC.

Future Work

- Continue coated core pins soldering trial at Stellantis
- Characterization of PVD coatings
 - -Adhesion quality
 - -Structure and microstructure
 - Roughness and surface defects
 - -Wear and oxidation resistance
- Characterization of aluminum soldered samples
 - Examine the phases formed at the interface between the solidified aluminum and the tested coatings
- Characterization of the adhesion mechanisms related to soldering
- Transition the best coatings to die casters

Gantt Chart

CANFSA FALL MEETING - OCTOBER 2021

Center Proprietary – Terms of CANFSA Membership Agreement Apply

Acknowledgements

- This program is sponsored by the Defense Logistics Agency Troop Support, Philadelphia, PA and the Defense Logistics Agency Information Operations, J68, Research & Development, Ft. Belvoir, VA
- N.D. Campos Neto is thankful to CAPES Brazil for a scholarship from the program DOC-PLENO Full Doctorate Abroad - Call No. 48/2017 - Selection 2018 process number 88881.175453/2018-01
- Accu-Die & Mold in Stevensville, MI fabricated the die at no cost to the project
- Kind and Co in Wiehl, Germany supplied the steel for the die at no cost to the project
- Century Sun Metal Treating in Traverse City, MI heat treated the steel for the die at no cost to the project
- Phygen Coatings in Minneapolis, MN for PVD coating the die cavities
- IBC Coatings in Lebanon, IN for polishing the core pins
- Stellantis in Kokomo, IN for helping the project
- Dr. Alan Luo and his group at OSU for receiving Nelson as a visiting researcher
- Dr. Ryan Brune at CDME (OSU) for helping in the die casting trials

Challenges & Opportunities

- Run controlled laboratory die casting experiments
 - At The Ohio State University
 - Laboratory size die casting machine (Buhler 250-ton)
 - Machine broke before finishing all proposed experiments
- Run industrial trials on selected coatings deposited on core pins in front of gate to understand steady-state soldering
 - Automotive die casting plant at Stellantis (Kokomo die casting plant)
 - High production volume
 - Difficult to control the trial in a production environment

Thank you! Nelson Delfino de Campos Neto ndelfino@mines.edu