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Project 55: Fe-Containing Multi-Principal 
Element Alloys for Protective Structures

• Student:  James Frishkoff (Mines)

• Advisors: Amy Clarke, Kester Clarke (Mines)

Project Duration

MS: January 2021 to December 2022

• Problem: TRIP/TWIP MPEAs currently rely on costly high alloy 

content, and composition dependence not yet well understood.

• Objective: Achieve TRIP/TWIP & strength-ductility combinations 

in Co-lean MPEAs via experimental methods and high-

throughput thermodynamic modeling.

• Benefit: Increasingly high strength-ductility combinations 

desired in many sectors, including vehicle protective structures.

Metrics

Description % Complete Status

1. Literature review 40% ●

2. ThermoCalc, PanDat & LAMMPS modeling 60% ●

3. Obtain industrial baseline material 100% ●

4. Alloy downselect 15% ●

5. Gleeble experiments on downselected alloys and industrial reference material 5% ●

Recent Progress

• Multi-factor computer-aided alloy design initiated and seven 
promising alloy candidates identified

• Microstructural evaluation of existing CoCrNi TRIP-MPEA 
family initiated

• Three baseline alloys sourced from ATI for comparison

• New arc melting furnace being installed – rapid small batch 
melting
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The Problem Space
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The Problem Space – Protective Structure 
Performance Metrics

I. Crouch, The Science of Armour Materials, Elsevier (2017). Reproduced from A. Doig, 

Military Metallurgy, Maney Publishing: London (1998)

Wants and needs:

• Yield & Dynamic Flow Stress 

(quasistatic up to 104 s-1)

• Ultimate Tensile Strength

• Strain to Fracture

• Work Hardening Rate

• Shear Strain Localization Resistance

• Surface Hardness

• Weldability
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Steel Example: Austenite/Martensite Mixtures 
Create Desirable Property Combinations

D.K. Matlock and J.G. Speer, “Design considerations for the next generation of advanced 

high strength steels”, In Proceedings of The 3rd International Conference on Advanced 

Structural Steels, Gyeongju, Korea, 2006, pp. 774-781

Y.F. Ye, Q. Wang, J. Lu, C.T. Liu, Y. Yang. “High-

entropy alloy: challenges and prospects”, Materials 

Today, 2011, 19(6):349-362
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Alloy Design Concepts

Z. Li et al, “Interstitial atoms enable joint twinning and 

transformation induced plasticity in strong and ductile 

high-entropy alloys”, Sci Rep, 2017, 7:40704

Basic factors:

• Metastability (TRIP)

• Deformation twinning (TWIP)

• Solid solution strengthening

• Precipitation hardening

• Grain size

Microstructural features:

• Limit brittle IMs e.g sigma phase

• γ’ precipitate strengthening

• Other precipitates (carbides, Fe2SiTi)

• GB pinning – precipitates, Nb

• Overaged precipitates (reduce ASB)
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Computer-Aided Alloy Design – Metastability

J.A. Copley, Prediction and Observation of Transformation-Induced 

Plasticity Behavior in CoCrNi Multi-Principal Element Alloys with In-Situ 

Synchrotron X-Ray Diffraction, MS Thesis, Colorado School of Mines, 2020

• T0, SFE complementary approaches
• Neither 100% predictive in MPEAs

• DFT more commonly used for MPEA SFE

Curtze, S., and V. T. Kuokkala. “Dependence of Tensile Deformation Behavior of TWIP 
Steels on Stacking Fault Energy, Temperature and Strain Rate.” Acta Materialia 58, no. 

15 (September 1, 2010): 5129–41. https://doi.org/10.1016/J.ACTAMAT.2010.05.049.
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Computer-Aided Alloy Design – Metastability

Fe53Ni25Al10Mn8Ti4C, 

Fe52Mn30Ni10Al8C
SFE = 27mJ/m2

Fe30Al20Ni20Cu20Mn10
SFE = 78.5mJ/m2

Fe40Cu20Al20Ni9Mn11
SFE = 66mJ/m2

Fe40Cu20Al10Ni20Cr10, 
SFE = 62.8mJ/m2

Fe50Cu20Al10Ni10Ti10

Fe58Ni25Mn8Ti4Al5C2.4
SFE = 28.25mJ/m2
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Solid solution strengthening 

calculated via TC-EARS 
method, Coury et al, Sci Reps

June 2018 

(https://doi.org/10.1038/s41598-
018-26830-6)

All SFE values calculated via 
modified Olson-Cohen method 

of Curtze et al., Acta Feb. 2011 
(doi.org/10.1016/j.actamat.2010.

10.037)

https://doi.org/10.1038/s41598-018-26830-6
https://doi-org.mines.idm.oclc.org/10.1016/j.actamat.2010.10.037
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New Developments in Literature

Fe65Ni15Co8Mn8Ti3Si– Nene et al. 2021

• TRIP/TWIP active with fine precipitates
• >1GPa YS, higher WHR than Fe50Mn30Co10Cr10

• Can we remove Co?
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New Developments in Literature

First try - Fe65Ni23Mn8Ti3Si

• Small C14 Laves window
• Possible ordered MnNiSi T6 phase (database 

sensitive)
• Embrittler in RPV steels, kinetics unknown

• η-Ni3Ti may be beneficial

• No Fe2SiTi predicted but could verify experimentally
• T/T0 = 0.16 predicted
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New Developments in Literature

Second try - Fe65Ni15Mn8Ti9Si3

• Some Laves (~10% <350°C)
• η-Ni3Ti may be beneficial

• Fe2SiTi predicted (12%)

• T/T0 = 0.49 predicted
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Computer-Aided Alloy Design – γ/γ’ 
Strengthening

Zhao, Y. L. et al. Development of high-strength Co-free high-entropy alloys hardened by 

nanosized precipitates. Scr. Mater. 148, 51–55 (2018).

(FeNi)67Cr15Mn10Al8-xTix
(x=3-5 at.%)

• γ’ strengthened TRIP-assisted armor 

steel (Wengrenovich 2016)

• γ’ strengthened Co-free MPEAs 

(Zhao 2018)

• Recent approach: maximize γ’, 

minimize IMs

Composition Max γ’  % Sigma phase Other Precipitates

Fe58Ni25Al10Mn8Ti4C2.4 15% - 330°C None η-Ni3Ti (5%)

Fe45Ni28Cr8Mn8Al5Ti6Nb.25 28% - 225°C
Present @ all γ’  

T, ~20%

η-Ni3Ti (26% @ 

500°C)

(FeNi)67Cr15Mn10Al3Ti5Nb.25 32% - 350°C
Present @ all γ’  

T, ~35%

η-Ni3Ti (26% @ 

550°C)



13Center Proprietary – Terms of CANFSA Membership Agreement ApplyCANFSA FALL MEETING – OCTOBER 2021

Computer-Aided Alloy Design – γ/γ’ 
Strengthening

• Precipitate/age hardening MPEAS: 
computed kinetics slow (100s of hours 

for small vol.%)

• Aging experiments needed
• Experimental data → positive feedback 

spiral in future modeling efforts

Fe58Ni25Al10Mn8Ti4C2.4



14Center Proprietary – Terms of CANFSA Membership Agreement ApplyCANFSA FALL MEETING – OCTOBER 2021

Constitutive Modeling

Johnson-Cook

• Empirical

• Many modifications, but all 
have T, strain rate params

• Common in high rate & 
ballistics studies

Zerilli-Armstrong

• Dislocation theory based

• Variants for crystal structure 

• Also frequently modified, 
common in ballistics

Borvik, T., O. S. Hopperstad, T. Berstad, and M. Langseth. “A Computational Model of Viscoplasticity
and Ductile Damage for Impact and Penetration.” European Journal of Mechanics - A/Solids 20, 
no. 5 (September 1, 2001): 685–712. https://doi.org/10.1016/S0997-7538(01)01157-3.

Dey, S., T. Børvik, O. S. Hopperstad, and M. Langseth. “On the Influence of Constitutive Relation in 
Projectile Impact of Steel Plates.” International Journal of Impact Engineering34, no. 3 (March 
1, 2007): 464–86. https://doi.org/10.1016/J.IJIMPENG.2005.10.003.

↑ BCC ↓ FCC
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Mechanical Test Plan
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• 3 samples/condition

• More conditions = better constitutive model fitting

• Example T, ሶ𝜀 from literature: 400 – 1000°C, 10-2 – 102/s (Saxena et al., J 

Mater Eng Perf, Sept 2019)

ASTM E8 tensile
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Mechanical Test Plan

• 3 samples/condition

• Baseline processing data vs. conventional alloys

• Support future microstructural optimization work
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Downselect Progress

Fe53Ni25Al10Mn8Ti4C, 

Fe52Mn30Ni10Al8C
SFE = 27mJ/m2

Fe30Al20Ni20Cu20Mn10
SFE = 78.5mJ/m2

Fe40Cu20Al20Ni9Mn11
SFE = 66mJ/m2

Fe40Cu20Al10Ni20Cr10, 
SFE = 62.8mJ/m2

Fe50Cu20Al10Ni10Ti10

Fe58Ni25Mn8Ti4Al5C2.4
SFE = 28.25mJ/m2
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Goal: 6 experimental alloys 

3-4 TRIP/TWIP, 2-3 precipitate strengthened

Decision metrics: 

1. Solid solution strength vs. T/T0, calculated SFE 

2. Precipitate fraction vs. T/T0, SFE

3. SSS vs. precipitate fraction
4. Presence & calculated kinetics of brittle IMs
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Industry Partner – ATI Specialty Materials

Added Capability

• 25 & 50 lb. vacuum melted ingots

• VAR/ESR for cleanliness

• Industrial thermomechanical 

processing & heat treatment

Baseline Alloys

• ATI 188 – Co-base high-temp 

austenitic alloy; high work-

hardening; TRIP?

• A286 – Legacy NiCr high-temp 

austenitic steel; TRIP?

• Datalloy HP – Highly alloyed steel; 

quasi-MPEA Datalloy HP

T/T0 = 0.13 (FCC→BCC)
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Year 1 Roadmap

• High-throughput thermodynamic modeling

• ThermoCalc & PanDat – T0, precipitation, phase diagrams

• LAMMPS – SFE, SRO

• TC-EARS models – solid solution strengthening

• Gleeble thermomechanical processing of baseline 

commercial products (ATI) – Materials are on campus

• Rapid small-scale arc melting of promising Fe-MPEAs –

Equipment ready for commissioning

FCC



20Center Proprietary – Terms of CANFSA Membership Agreement ApplyCANFSA FALL MEETING – OCTOBER 2021

Gantt Chart



21Center Proprietary – Terms of CANFSA Membership Agreement ApplyCANFSA FALL MEETING – OCTOBER 2021

Acknowledgements

• This program is sponsored by the Defense Logistics Agency – Troop Support, 
Philadelphia PA and the Defense Logistics Agency Information Operations, J68, 
Research & Development, Ft. Belvoir, VA.

• Special thanks is also given to ATI Specialty Materials for providing test materials.



Center for Advanced
Non-Ferrous Structural Alloys
An Industry/University Cooperative Research Center

Thank you for your time!
Questions?



Center for Advanced
Non-Ferrous Structural Alloys
An Industry/University Cooperative Research Center

Supplementary Slides



24Center Proprietary – Terms of CANFSA Membership Agreement ApplyCANFSA FALL MEETING – OCTOBER 2021

Modified Olson-Cohen SFE Algorithm

Curtze, S., V. T. Kuokkala, A. Oikari, J. Talonen, 

and H. Hänninen. “Thermodynamic Modeling of the 

Stacking Fault Energy of Austenitic Steels.” Acta 

Materialia 59, no. 3 (February 1, 2011): 1068–76. 

https://doi.org/10.1016/J.ACTAMAT.2010.10.037.
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Industry Partner – ATI Specialty Materials

Added Capability

• 25 & 50 lb. vacuum melted ingots

• VAR/ESR for cleanliness

• Industrial thermomechanical 

processing & heat treatment

Baseline Alloys

• ATI 188 – Co-base high-temp 

austenitic alloy; high work-

hardening; TRIP?

• A286 – Legacy NiCr high-temp 

austenitic steel; TRIP?

• Datalloy HP – Highly alloyed steel; 

quasi-MPEA Datalloy HP

T/T0 = 0.13 (FCC→BCC)
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Performance-Driven Systems Approach to 
Alloy Design

Mishra, R. S., Haridas, R. S. & Agrawal, P. High entropy alloys – Tunability of deformation mechanisms 

through integration of compositional and microstructural domains. Materials Science and Engineering A 

vol. 812 141085 (2021).
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T0 Screening - Fe50Mn30Cr10Co(10-X)MX Family

 

   

   

   

   

 

   

            

 
  
 
  
 
 
 
 
 
 
 

                   

                             

       

• Tried many Fe50Mn30Cr10Co(10-X)MX

derivatives of landmark TRIP-MPEA

• V, Ti, Al all reduce T/T0 (i.e promote 

TRIP)

• V is strongest T/T0 reducer

• Problem – avoiding σ phase 

formation – need kinetics studies

• Are M23C6, M7C3 & η carbides 

preferable to σ in this setting?
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Adiabatic Shear Banding & Microstructure

• Some evidence that aging affects ASB 

formation, morphology

• Zhang et al. (J Mater Sci June 2020) – ASBs 

in Al-Zn-Mg-Cu wider in overaged vs peak

• Wider ASB → higher critical strain/strain rate 

to form (Xue et al., Acta 44 1996)

• Peak age vs overage – different substructure 

in dynamic loading → diff shear localization 

behavior

• Torsion Kolsky best way to assess

• Also evidence of ASB dissolution of γ’ 

(Colliander et al. Phil Letters Sept 2020)
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SFE, Temperature & Strain Rate Effects on 
Deformation Mechanism

Curtze, S., and V. T. Kuokkala. “Dependence of Tensile Deformation Behavior of TWIP Steels on Stacking Fault Energy, Temperature 
and Strain Rate.” Acta Materialia 58, no. 15 (September 1, 2010): 5129–41. https://doi.org/10.1016/J.ACTAMAT.2010.05.049.

• Competing ሶ𝜀 effects

• High ሶ𝜀 promotes twinning, but also raises T →

suppresses twinning

• High ሶ𝜀 also promotes HCP TRIP but not BCC 
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Alloy Design Strategy – Yield Strength

Zhao, Y. L. et al. Development of 
high-strength Co-free high-
entropy alloys hardened by 

nanosized precipitates. Scr. 
Mater. 148, 51–55 (2018).

Solid Solution Strengthening γ’ Precipitate Strengthening

Improved YS over 
Fe50Mn30Co10Cr10
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Alloy Design Strategy – Post-Yield Behavior

L. Wang et al, Mechanical response 

and deformation behavior of 
Al0.6CoCrFeNi high-entropy alloys  

upon dynamic loading, Mater Sci Eng
A (727) June 2018

W. Jiang et al, Dynamic impact behavior 
and deformation mechanisms of 

Cr26Mn20Fe20Co20Ni14 high-entropy 
al loy, Mater Sci Eng A (824) September 

2021

TRIP

TWIP

• V&V’d modeling approach (T0) for TRIP
• Computationally cheap
• Database-sensitive, not yet mature in MPEAs

• TWIP considered to have attractive ballistic properties
• TWIP harder to predict (stacking fault energy)
• SFE good predictor for both TWIP & TRIP
• Computationally expensive, more expertise required (DFT)
• Thermodynamic methods (Olson-Cohen) not fully validated 

for MPEAs
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End User Context – Growth in Protective 
Structure Requirements
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