

Center for Advanced **Non-Ferrous Structural Alloys** An Industry/University Cooperative Research Center

Project 33A-L: In-Situ Studies of Strain Rate Effects on Phase Transformations and Microstructural Evolution in β Titanium

Fall Meeting October 13th – 15th 2020

- Student: Benjamin Ellyson (Mines)
- Faculty: Amy Clarke (Mines)
- Industrial Mentors: Austin Mann (Boeing), Clarissa Yablinsky (LANL), John Foltz (ATI)
- Other Participants: Jonah Klemm-Toole (Mines)

Project 33A-L: In-Situ Studies of Strain Rate Effects on Phase Transformations and Microstructural Evolution in β-Titanium

 Student: Benjamin Ellyson (Mines) Advisor(s): Amy Clarke (Mines) 	Project Duration PhD: September 2017 to May 2021
 <u>Problem</u>: Uniform elongation and work hardening of titanium alloys restricts applications <u>Objective</u>: Fundamentally understand microstructural evolution in metastable β titanium alloys to develop an alloy design methodology and tailor microstructures and properties <u>Benefit</u>: Novel titanium alloys for blast and crash resistant applications 	 <u>Recent Progress</u> Electron backscatter diffraction (EBSD) of APS specimens underway Investigation of transition to TRIP inhibited behavior for aged Ti-1023 Dilatometry of Ti-15Mo and Ti-1023 is near completion First principles calculations of binary metastable titanium alloys underway

Metrics						
Description		Status				
1. Literature review	80%	•				
2. Quasi-static mechanical characterization of Ti-1023 and Ti-15Mo	95%	•				
3. Dynamic testing of Ti-1023 and Ti-15Mo		•				
4. Microstructural characterization of pre- and post-deformed samples		•				
5. In situ characterization of microstructural evolution during deformation		•				

FALL CANFSA MEETING – OCTOBER 2020 Center Proprietary – Terms of CANFSA Membership Agreement Apply

Industrial Relevance: Development of

Blast Resistant Materials for the Navy (

Cellular Materials Program

- Multifunctional structures
- Blast resistance
- Thermal management
- **Propulsion Materials Program**
 - Aircraft and marine engines

Ti-25Nb-3Zr-3Mo-2Sn (wt.%) Alloy Microstructure After Deformation

Compression at 10⁻³ to 0.18 true strain

H. Zhan, et al. 107 Scripta Materialia (2015): 34-37

 FALL CANFSA MEETING – OCTOBER 2020
 Center Proprietary – Terms of CANFSA Membership Agreement Apply

Multi-scale Studies of TRIP/TWIP During High Rate Deformation

TRIP: Transformation Induced Plasticity TWIP: TWinning Induced Plasticity

FALL CANFSA MEETING - OCTOBER 2020

The Effect of Strain Rate on Deformation Mechanisms During Compression of a Ti-10V-3Fe-3AI (wt.%) Alloy

- Deformation mechanisms present at all strain rates :
 - Stress-induced α" martensite
 - $\{332\}<113>\beta$ twinning
 - Stress-induced ω
 phase
 - Slip

Strain rate (10⁻³ to 10² s⁻¹)

CANFSA

M. Ahmed et al., Acta Materialia (2016), 104:190-200

As-Quenched Quasi-static Tension of TRIP Ti-1023

FALL CANFSA MEETING - OCTOBER 2020

Center Proprietary – Terms of CANFSA Membership Agreement Apply

Low-Temperature Aging of TRIP Ti-1023

Aging for indicated number of seconds at 423 K

FALL CANFSA MEETING – OCTOBER 2020 Center Proprietary – Terms of C/

Center Proprietary – Terms of CANFSA Membership Agreement Apply

ω -phase in 423 K Aged Ti-1023

Aging for indicated number of seconds at 423 K

BER 2020 Center Proprietary – Terms of CANFSA Membership Agreement Apply

Transition To TRIP Inhibited

EBSD & XRD of Interrupted Tensile Tests of Aged Ti-1023

Xray diffractograms from fractured gage section

FALL CANFSA MEETING – OCTOBER 2020

Center Proprietary – Terms of CANFSA Membership Agreement Apply

EBSD of Interrupted Tensile Tests of Aged Ti-1023

As-quenched 0.5% Plastic strain

900 s at 423 K 0.5% Plastic strain

As-quenched, deformed 0.5% plastic strain at 10⁻³s⁻¹

Dynamic Hall-Petch effect: Average slip length decreases with plastic strain

Primary product

Primary product Secondary product

Primary product Secondary product Tertiary product

Without mentioning fine scale structure!

FALL CANFSA MEETING – OCTOBER 2020 Center Proprietary – Terms of CANFSA Membership Agreement Apply

Fine Scale Structure (TEM)

NON-FERROUS STRUCTURAL ALLOYS 900 s at 423 K H 1 um Fractured 0.5% Plastic strain 200 n

Fine Scale Structure (TEM/ASTAR)

H 200 nm

Dark field image taken from $\{112\}_{\beta}$

ASTAR courtesy of Jing at NanoMEGAS

FALL CANFSA MEETING – OCTOBER 2020 Center Proprietary – Terms of CANFSA Membership Agreement Apply

200 nm

APS 32-ID Pressure Bar Testing CANFSA

Alloys (wt %)	Name of condition and Heat Treatments				
Ti-10V-2Fe-3Al	AQ 1123K-0.5h→WQ / TRIP	MTS AQ+423K-900s / TRIP	TI AQ+423K-7200s / SLIP		
Ti-15Mo	AQ 800-1h→WQ / TWIP				
Ti-12Mo	AQ 820-1h→WQ / TRIP+TWIP				
Diffracted beam Imaging					
T	Fransmitted Sample Deam Load Cell				
	Oscillosc	ope			

Twinning vs Transformation

TRIP Ti-1023

TWIP Ti-15Mo

Green: α''

Black: β

FALL CANFSA MEETING - OCTOBER 2020

Center Proprietary – Terms of CANFSA Membership Agreement Apply

Deformation at ~1000 s⁻¹

In-situ TWIP Ti-15Mo Data

900

 FALL CANFSA MEETING – OCTOBER 2020
 Center Proprietary – Terms of CANFSA Membership Agreement Apply

Ti-15Mo High Rate Tension EBSD Overview

- Tested at 75 psi in position 2
- Strain rate of 2000/s

IQ map + Twin Boundaries

IPF map

 FALL CANFSA MEETING – OCTOBER 2020
 Center Proprietary – Terms of CANFSA Membership Agreement Apply

Ti-15Mo High Rate Tension EBSD Overview

- Tested at 75 psi in position 2
- Strain rate of 2000/s

Primary {332}<113> Twins

{332}<113> are characterized by a Σ11 CSL boundary with 50.5° misorientation relative to [110]

FALL CANFSA MEETING – OCTOBER 2020 Center Proprietary – Terms of CANFSA Membership Agreement Apply

Ti-15Mo High Rate Tension EBSD Overview

- Tested at 75 psi in position 2
- Strain rate of 2000/s

Primary {332}<113> Twins

Secondary {332}<113> Twins

Conclusions

- EBSD is working great!
- Low-temperature aged Ti-1023 remains TRIP dominant, implying that aging affects the transformation stress without affecting chemical stability
- Ti-15Mo remains TWIP dominant at high-rates
- High rate deformation of Ti-15Mo activates {112}<111> twinning, which is unreported
- A publication was prepared on the effect of low T aging on the strength of Ti-1023

Thank you!

Benjamin Ellyson bellyson@mines.edu

 FALL CANFSA MEETING – OCTOBER 2020
 Center Proprietary – Terms of CANFSA Membership Agreement Apply

Challenges & Opportunities

Challenges

- TEM has been down recently
- Ductility will have to be measured directly on APS specimens (and/or from radiography data)

Opportunities

- ω-phase strengthening provides increased yield strength without tradeoff to ductility
- Transition to TI condition is gradual, suggesting a larger window for in-service properties

Synthesis of Tested Materials

Alloy	State	Strain Rate		
		~10 ⁻³	~10-1	~10 ² -10 ³
1023	AQ	CSM/CHESS	CSM	LANL/ <mark>APS</mark>
1023	MTS	CSM/CHESS	CSM	LANL/ <mark>APS</mark>
1023	TI	CSM/CHESS	CSM	APS
15Mo	AQ	CSM/CHESS	CSM	LANL/ <mark>APS</mark>
12Mo	AQ	Х	Х	APS

2 Over-arching studies are being conducted:

- 1. Effects of low-temperature aging and strain rate on deformation of Ti-1023
- 2. Effects of composition on deformation at high rate in Ti-Mo system

Secondary studies accompanying current work:

- 1. Effect of strain rate on deformation structure of Ti-15Mo
- 2. Investigating the effect of the low-temperature aging on ω phase in Ti-1023
- 3. Investigating the nature of competition between ω and α " during quasi-static def.

APS-W15 A4

- Tested at 30 psi in pos 4
- Strain rate of 1000/s
- Tensile Direction

Amorphous or Nano Grains

What is happening w/ ω-phase

Comparison of Post-Yield Microstructure of Ti-1023

As-Quenched

Aged 900s at 423K

Deformed by a 0.5% plastic strain in tension at $10^{-3}/s$

Comparison of Microstructure of Failed Tensile Specimens of Ti-1023

As-Quenched

Aged 7200s at 423K

All images are from specimens failed in tension at $10^{-3}/s$

FALL CANFSA MEETING – OCTOBER 2020 Center Proprietary – Terms of CANFSA Membership Agreement Apply

Natural Aging in Ti-1023

FALL CANFSA MEETING – OCTOBER 2020

Center Proprietary – Terms of CANFSA Membership Agreement Apply

TEM of ω -phase Aging

Comparison of Over-Aged (7200s, 423K) Microstructure of Ti-1023

Chen et al., Acta Materialia (2019).

DBs : Dislocation bands

XRD indicates that the material is still single phase β , i.e. no martensite is present

Artificial Aging of Ti-1023 for 7200s at 423K inhibits stressinduced martensite and causes dislocation bands to form

 FALL CANFSA MEETING – OCTOBER 2020
 Center Proprietary – Terms of CANFSA Membership Agreement Apply

Lai et al. Acta Materialia 151 (2018): 67-77.

Strain Rate Effects on TRIP Ti-1023

FALL CANFSA MEETING - OCTOBER 2020

Center Proprietary – Terms of CANFSA Membership Agreement Apply

Strain Rate Effect in TWIP Ti-15Mo

FALL CANFSA MEETING – OCTOBER 2020 Center Proprietary – Terms of CANFSA Membership Agreement Apply

APS High-Rate In-situ Kolsky Bar

 FALL CANFSA MEETING – OCTOBER 2020
 Center Proprietary – Terms of CANFSA Membership Agreement Apply

FALL CANFSA MEETING - OCTOBER 2020

Center Proprietary – Terms of CANFSA Membership Agreement Apply

SΔ

Post-Processing: Mechanical

Post-Processing: Diffraction

Exact synching remains to be done

Each frame corresponds to 20 µs interval

Interpreting Diffraction Data

- Shift of peak intensity in 2θ indicates a phase change
- Increase in peak intensity indicates crystallite size refinement (twinning)

 FALL CANFSA MEETING – OCTOBER 2020
 Center Proprietary – Terms of CANFSA Membership Agreement Apply

 FALL CANFSA MEETING – OCTOBER 2020
 Center Proprietary – Terms of CANFSA Membership Agreement Apply

Strain Rate Vs. Length Scale Overview: Current Progress

