Center/Site: CANFSA/Iowa State University	Date: October 2020
Tracking No .: Project 36b-L: Rationalization of Liquid/Solid and Solid/Solid Interface Instabilities During Thermal- Mechanical Transients of Metal Additive Manufacturing	E-mail : pcollins@iastate.edu
	Phone : (515) 294 - 5127
Center/Site Director: CANFSA/M. Kaufman/P. Collins/A. Clarke	Type: (Continuing)
Project Leader: Peter Collins	Proposed Budget: N/A
Project Description : The length and time scales in additive m manufacturing techniques such as welding, casting, powder met between the resulting thermal gradients and microstructure. The science behind the relation between thermal gradients in AM bui strategies, and the microstructure and texture evolution, using T	allurgy, etc., create unique relationships e goal of this project is to understand the lds, as a function of different scan
Experimental plan : Ti-6AI-4V and Inconel 738 samples were additive manufacturing system, using 3 different scanning strates been working on the characterization of these samples across disuch as a serial sectioning robotic arm in conjunction with an op The latest observations have been about different types of pores samples and how they influence the texture and grain growth, a	egies (raster, dehoff and random). ISU has fferent length scales (using equipment tical microscope, SEM, TEM and SRAS). and defects present in the titanium
Related work elsewhere : The majority of previous work has barameters to improve individual build operations without a basi microstructural development.	ic science study on the effects of AM on
How this project is different: The MURI project is focused or science and phenomena through the thermomechanical gyration processes.	
Milestones for the current proposed year : Comprehensive pherical pores in both formation and behavior when present in of Inconel 738 samples with "printed" defects in precise location	AM parts. Characterization and compariso
Deliverables for the current proposed year : 2-3 papers on 4V. At least one draft paper on Inconel 738.	different observations of defects in Ti-6Al
How the project may be transformative and/or benefit so mechanical properties of AM components as well as reducing the manufacture curve. Fill in knowledge gaps in AM.	
Research areas of expertise needed for project success: I Jnderstanding of composition-microstructure-property relationsl ransformation behavior during solidification. Sources of defects	hips. Ability to analyze texture. Phase
Potential Member Company Benefits: Deeper understanding	g of AM processes.
Progress to Date: ISU team has work on characterization (2D papers. One paper has already being accepted in the Metallurgic and another one will be submitted for publication next week.	
Estimated Start Date: Fall 2018 Estimated Know	wledge Transfer Date: Fall 2021
Estimated Start Date: 1 di 2010	