

Center for Advanced Non-Ferrous Structural Alloys An Industry/University Cooperative Research Center

Project #36A-L: Microstructural Evolution in Titanium Alloys Under Additive Manufacturing Conditions

Summer 2020 Videoconference October 13th, 2020

Student: Alec Saville (Mines)

Faculty: Amy Clarke (Mines)

Industrial Mentors: Adam Pilchak (AFRL), Collin Donohoue/Jessica Buckner (SNL) Other Participants: Sven Vogel (LANL), Adam Creuziger & Jake Benzing (NIST)

Project 36A-L: Microstructural Evolution in Titanium Alloys Under Additive Manufacturing Conditions

Student: Alec Saville (Mines)Advisor(s): Amy Clarke (Mines)	Project Duration PhD: 2018 - 2022
 <u>Problem</u>: Control of material properties in metallic additive manufacturing (AM) is difficult due to a lack of background knowledge on material evolution within AM production methods. 	 <u>Recent Progress</u> Completed evaluation of EBM Ti-6AI-4V as- transformed and as-solidified microstructure and texture.
• <u>Objective</u> : Understand microstructural evolution of $\alpha + \beta$ and binary alloys under AM conditions.	• Evaluating as-received texture of WAAM Ti-6AI-4V as a function of build height.
 <u>Benefit</u>: Greater understanding of microstructural evolution in AM will inform predictive capabilities and improve performance of AM parts. 	 Finalizing proposal to evaluate texture memory effect of EBM Ti-6AI-4V in heating-cooling cycles. Evaluated as-received Ti-Cu alloy microstructure.

Metrics			
Description	% Complete	Status	
1. As-Received EBM Ti-6AI-4V Microstructural Evaluation	80%	•	
2. EBM Ti-6AI-4V Texture Memory Effect Exploration	10%	•	
3. As-Received WAAM Ti-6AI-4V Microstructural Evaluation	10%	•	
4. Ultrafine Grain Refinement Studies on Ti-Cu	10%	•	
5. Thesis Chapters	40%	•	

Fall 2020 CANFSA Meeting

Overview

- Ti-6Al-4V
 - EBM Ti-6Al-4V as-received findings
 - Transformed microstructure and texture
 - As-solidified microstructure and texture
 - EBM Ti-6Al-4V texture memory effect
 - WAAM Ti-6Al-4V work
- Ti-Cu
 - Background and objective
 - Experimental matrix

As-Received EBM Ti-6AI-4V

Fall 2020 CANFSA Meeting

Experimental Specimens

Dehoff

Raster

Random

Fall 2020 CANFSA Meeting

Initial Texture Measurements

- High-Pressure Preferred Orientation (HIPPO)
 - TOF neutron diffraction
 - Los Alamos National Laboratory
- Crystallographic texture
- Capable of variable temperature experiments
- Texture data extracted via Rietveld refinement

HIPPO beamline at LANL^[1]

^[1] S. Takajo, S.C. Vogel, Determination of pole figure coverage for texture measurements with neutron time-of-flight diffractometers, Journal of Applied Crystallography.

Neutron Diffraction Texture Measurements

- Bulk texture measurements
 ~ 600 mm³
- Local texture measurements
 ~ 150 mm³
- Sample is rotated three times during measurement
- 15-20 minute exposure per sample rotation

Texture in AM Ti-6AI-4V

- Strong $\{100\}_{\beta}$ fiber texture during solidification for β -Ti
- α -Ti texture is variable after transformation
 - Rapid cooling = Little to no α -Ti texture
 - Intermediate cooling = Moderate α -Ti texture
- Function of build parameters and build process

Example β -Ti pole figures illustrating a {001} solidification fiber texture.

Neutron Diffraction Results

	Scan Strategy	Bulk	1 mm Build Height	13 mm Build Height	23 mm Build Height
	Dehoff α-Ti				
	Random α-Ti				
	Raster α-Ti				
Reference Frame $\xrightarrow{\uparrow y} x$					
	BD (out)				
Fall 20	020 CANFSA Meeting	Center Proprietary	 Terms of CANFSA Members 	ship Agreement Apply	

Fiber Textures

- All specimens showed evidence of fiber textures
 - $\{11\overline{2}0\}_{\alpha}$ and $\{01\overline{1}2\}_{\alpha}$
 - W/R to build direction
- Source of primary texture components
 - $\{01\overline{1}2\}_{\alpha}$ not reported in AM literature
 - Orientations of higher intensity change with scan strategy

Fiber textures in the Random scan strategy specimen

EBSD Measurements

- Series of EBSD maps as a function of build height
 - 4 mm x 4 mm
 - Centerline of specimen
- Large-scale maps required for comparable texture data
 - Smaller sampling size compared to neutron diffraction

EBSD α -Ti Texture

	Scan Strategy	0-4 mm Build Height	6-10 mm Build Height	11-15 mm Build Height	19-23 mm Build Height
	Dehoff α-Ti	(0002) Y X 1 0		(0002) Y X 1 0	(0002) Y X 1 0
	Random α-Ti	(0002) (0002) (0002) (0002) (1) (2) (1) (0) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1		(0002) Y X 1 0	
	Raster α -Ti	(0002) (0002)	(0002) Y X 1 0	(0002) Y X 1 0	(0002) Y X 4 3 2 1 0

EBSD β -Ti Texture

	Scan Strategy	0-4 mm Build Height	6-10 mm Build Height	11-15 mm Build Height	19-23 mm Build Height	
	Dehoff β-Ti			(001) Y X 1 0	(001) Y X 1 0	
	Random β -Ti	(001) Y X 2 1 0	(001) Y X X 1 0	(001) Y X 1 0		
	Raster β -Ti	(001) Y X 1 0	(001) Y X 1 0	(001) Y 1 1 0		

Fall 2020 CANFSA Meeting

Reconstructed Microstructures

Fall 2020 CANFSA Meeting

Microstructural Comparison (4 mm from Build Start)

Random

Average grain area = 655 μ m²

Fresh β -Ti nucleation during solidification (fine grains)

Raster Average grain area = $4350 \,\mu m^2$ Cube Texture

Epitaxial solidification of β -Ti (Large columnar grains)

Fall 2020 CANFSA Meeting

Microstructural Comparison (4 mm from Build Start)

Dehoff

Average grain area = 1285 μ m²

Weaker $\{100\}_{\beta}$ Solidification Fiber Texture

Mixed solidification phenomenon ("finer" grains)

Raster Average grain area = 4350 μ m² Cube Texture Epitaxial solidification of β -Ti

(Large columnar grains)

Fall 2020 CANFSA Meeting Center Proprietary –

Microstructure ↔ Texture

- Presence of the $\{01\overline{1}2\}_{\alpha}$ can be used as an indicator of microstructure without extensive characterization
 - Lab scale x-ray diffraction (XRD)

Finer as-solidified grains

Large as-solidified grains

EBM Ti-6AI-4V Texture Memory Effect

Fall 2020 CANFSA Meeting

Future Experiment: Texture Memory Effect

- α -Ti variants can be recreated after β -Ti annealing
 - Complete destruction of transformed microstructure
 - Returns same α -Ti texture
- Prior AFRL work has demonstrated these effects
- **Objective:** Evaluate texture memory effect for EBM Ti-6Al-4V specimens.
- In-situ heating/cooling at LANL HIPPO beamline
 - Is texture memory effect observed?
 - How do different starting microstructures influence texture memory effect?
- Challenge creating comparable AM cooling rates
 - Limited cooling rates at HIPPO
 - Secondary experimentation at CSM required

WAAM Ti-6Al-4V

Fall 2020 CANFSA Meeting

Experimental Plan

50 mm

- Sister-study to EBM Ti-6Al-4V work
 - Different melt pool scaling and thermal histories
- Texture and microstructure
 - HIPPO
 - Large-scale EBSD
- Model melt pools and solidification
 - Flow3D

Texture? Microstructure?

Ti-Cu

Fall 2020 CANFSA Meeting

Designer Ti-Cu Alloys for AM Demonstrate Grain Refinement

D. Zhang, D. Qiu, M.A. Gibson, Y. Zheng, H.L. Fraser, D.H. StJohn, M.A. Easton, Additive manufacturing of ultrafinegrained high-strength titanium alloys, Nature. 576 (2019) 91–95. <u>https://doi.org/10.1038/s41586-019-1783-1</u>.

Fall 2020 CANFSA Meeting

Origins of Refinement Not Well Understood

- Equiaxed grains from solidification (Zhang et al.)
 - Constitutional supercooling
- Solid state microstructural refinement during thermal cycling?
 - Analogous to ferrite refinement in steels

Ti-Cu Microstructure Evolution During Build Process

D. Zhang, D. Qiu, M.A. Gibson, Y. Zheng, H.L. Fraser, D.H. StJohn, M.A. Easton, Additive manufacturing of ultrafinegrained high-strength titanium alloys, Nature. 576 (2019) 91–95. <u>https://doi.org/10.1038/s41586-019-1783-1</u>.

Fall 2020 CANFSA Meeting

Center Proprietary – Terms of CANFSA Membership Agreement Apply

Buildingdirection

Representative Ti-Cu Microstructures

Reported AM-Build Microstructure

D. Zhang, D. Qiu, M.A. Gibson, Y. Zheng, H.L. Fraser, D.H. StJohn, M.A. Easton, Additive manufacturing of ultrafine-grained highstrength titanium alloys, Nature. 576 (2019) 91– 95. <u>https://doi.org/10.1038/s41586-019-1783-</u> 1.

500 nm

Lamellae & Ti₂Cu Particles

Ti₂Cu Particles EDS

Acquired Ti-Cu

Experimental Plan

- Nucleation of β -Ti needs to be better understood
 - Reformation of prior β -Ti
 - New β -Ti nucleation
- Use dilatometer to heat alloy into β -Ti regime
- Quench specimens to form martensitic α'
- Provide single phase for β-Ti reconstruction

Challenges & Opportunities

- Ti-Cu literature reports three different eutectoid compositions
 - Base understanding of the alloy space not fully defined?
- Delays to anticipated timeline expected
 - COVID-19 and campus restrictions
- Potential for extensive collaborations as previously completed with EBM Ti-6Al-4V
 - Already working with LANL, SNL, and NIST

Thank you for listening! Any questions, comments, or concerns?

Alec Saville asaville@mymail.mines.edu

Fall 2020 CANFSA Meeting

Project #36A-L: Microstructural Evolution in Titanium Alloys Under Additive Manufacturing Conditions

Student: Alec Saville

Faculty: Amy Clarke

Industrial Partners: AFRL and SNL

Project Duration: August 2018 – May 2022

Achievement

 Understand the evolution of titanium microstructures within AM environments and as a function of build parameters.

Significance and Impact

 Understanding evolution of AM titanium microstructures enables greater control of material performance, improving confidence of AM part quality and tailorable material properties.

Research Details

 Correlating texture/microstructure measurements and evaluating differences in microstructural evolution between WAAM and EBM builds.

Spot Melt Strategy

 $\{001\}_{meta}$ fiber

Raster Melt Strategy

 β -Ti EBSD reconstructions of the assolidified microstructure for a spot melt strategy (top) and a traditional raster scan strategy (bottom).

Project #36A-L: Microstructural Evolution in Titanium Alloys Under Additive Manufacturing Conditions

Student: Alec Saville

Faculty: Amy Clarke

Industrial Partners: AFRL and SNL

Project Duration: August 2018 – May 2022

Program Goal

Understand the evolution of titanium microstructures within AM environments and as a function of build parameters.

Approach

Utilize multi-scale characterization (neutron diffraction and large-scale EBSD) to evaluate microstructural evolution of AM titanium alloys.

Benefits

Understanding evolution of AM titanium microstructures enables greater control of material performance, improving confidence of AM part quality and tailorable material properties.

Spot Melt Strategy

 $\{001\}_{\beta}$ fiber

Raster Melt Strategy

 β -Ti EBSD reconstructions of the assolidified microstructure for a spot melt strategy (top) and a traditional raster scan strategy (bottom).

