

Center for Advanced Non-Ferrous Structural Alloys An Industry/University Cooperative Research Center

Predicting Mechanical Behavior

Fall Meeting October 13th – 15th 2020

- Student: Andrew Temple, Maria Quintana (ISU)
- Faculty: Dr. Peter Collins (ISU)
- **Industrial Mentors:**

Predicting Mechanical Behavior

 Student: Andrew Temple, Maria Quintana (ISU) Advisor(s): Peter Collins (ISU) 	Project Duration PhD: Spring 2020 to Spring 2021
 <u>Problem:</u> Traditional strain hardening equations (e.g., Ludwik, Hollomon, Swift, and Voce) are entirely empirical. <u>Objective:</u> Develop an in-depth understanding of process-agnostic microstructure-composition- property relationships as they relate to the underlying "material state". <u>Benefit:</u> Enables the potential applicability of the predictive stress-strain (elastic AND plastic) model to a wide variety of AM materials. 	 <u>Recent Progress</u> Determination of Kocks-Mecking (KM) storage and recovery coefficients for AM Ti-6AI-4V Generation of synthetic stress-strain curves using only three material properties Process-agnostic prediction of ultimate tensile strength within 5% for AM Ti-6AI-4V

Metrics			
Description	% Complete	Status	
1. Literature review	90%	•	
2. Fitting of the KM model to stress-strain data for AM Ti-6AI-4V to determine coefficients	85%	•	
3. Microstructural characterization and image analysis for feature quantification		•	
4. Determine microstructure and defect dependence of KM model coefficients		•	
5. Extension of the predictive model to AM alloys beyond Ti-6AI-4V	0%	•	

FALL CANFSA MEETING – OCTOBER 2020 Center Pro

Center Proprietary – Terms of CANFSA Membership Agreement Apply

Predictive Yield Strength Equation

$$\sigma_{ys} = \begin{cases} F_V^{\alpha} \cdot \sigma_0^{\alpha} + F_V^{\beta} \cdot \sigma_{SS}^{\theta} + & \text{Intrinsic Strength} \\ F_V^{\alpha} \cdot \sigma_{SS}^{\alpha} + F_V^{\beta} \cdot \sigma_{SS}^{\theta} + & \text{Solid Solution Strengthening} \\ F_V^{\alpha} \cdot \sigma_{SS}^{\alpha} + F_V^{\beta} \cdot \sigma_{SS}^{\theta} + & \text{Solid Solution Strengthening} \\ F_V^{\alpha d} \cdot C_{\alpha-lath} \cdot (t_{\alpha-lath})^n \cdot (t_{\beta-rib})^{-n} + & \text{Hall} - \text{Petch Strengthening (colonies)} \\ F_V^{\alpha d} \cdot C_{col} \cdot (t_{colony})^n + & \text{Hall} - \text{Petch Strengthening (colonies)} \\ (-1) \cdot (AxisDebit) + & \text{Texture Debits (easier slip)} \\ F_V^{BW} \cdot \alpha MGb\sqrt{\rho} & \text{Taylor Hardening} \end{cases} \quad \text{Texture: } 0-10\% \\ \text{Microstructure: } 10-20\% \\ \text{Microstructure: } 10-20\% \\ \text{F}_V^{\alpha d} \cdot 150 \cdot (t_{\alpha-lath})^{-0.5} \cdot (t_{\beta-rib})^{0.5} + \\ F_V^{col} \cdot 150 \cdot (t_{\alpha-lath})^{-0.5} \cdot (t_{\beta-rib})^{0.5} + \\ F_V^{col} \cdot 125 \cdot (t_{colony})^{-0.5} + \\ F_V^{col} \cdot 125 \cdot (t_{colony})^{-0.5} + \\ F_V^{BW} \cdot \alpha MGb\sqrt{\rho} & \text{Works without modification for:} \\ 3 \text{ different heat treatments,} \\ 2 \text{ different chemistries,} \\ \text{Wrought material} \end{cases} \quad \text{Microstructure: } 10-20\% \\ \text{Microstructure$$

Measured Yield Strength (MPa)

Hayes, Brian J., et al. "Predicting tensile properties of Ti-6Al-4V produced via directed energy deposition." Acta Materialia 133 (2017): 120-133.

 FALL CANFSA MEETING – OCTOBER 2020
 Center Proprietary – Terms of CANFSA Membership Agreement Apply

Fig. 3—Analysis of a stress-strain curve of deformed copper using Eqs. [1] through [4].

10-4

10-3

10-2

10⁻⁵

100 -----

Kleemola, H. J., and M. A. Nieminen. "On the strain-hardening parameters of metals." Metallurgical transactions 5.8 (1974): 1863-1866.

Kocks-Mecking (KM) Model

- Kocks, Mecking, Estrin, Vinogradov, Yasnikov, et al.
- Dislocation density evolution with strain

$$\frac{d\rho}{d\varepsilon} = k_1 \sqrt{\rho} - k_2 \rho$$

$$\sigma = \sigma_0 + \frac{\alpha GMbk_1}{k_2} \left(1 - \exp\left(-\frac{k_2 M\varepsilon}{2}\right) \right)$$

$$\varepsilon_n = \frac{2}{k_2 M} \ln\left(\frac{(2+k_2 M)(\alpha G b M k_1)}{2(\alpha G b M k_1 + k_2 \sigma_0)}\right)$$

- σ_0 is the flow stress (i.e., the yield stress)
- k_1 is the dislocation storage coefficient
- k_2 is the recovery coefficient controls the annihilation rate

Vinogradov, A., I. S. Yasnikov, and Y. Estrin. "Irreversible thermodynamics approach to plasticity: dislocation density based constitutive modelling." Materials Science and Technology 31.13 (2015): 1664-1672.

 FALL CANFSA MEETING – OCTOBER 2020
 Center Proprietary – Terms of CANFSA Membership Agreement Apply

Tensile Testing

KM Model – Experimental Curve CANFSA

7

Correlation of KM Model Coefficients

Synthetic Stress-Strain Curve (Elastic AND Plastic)

Three material properties: elastic modulus, yield strength, and dislocation storage coefficient

FALL CANFSA MEETING – OCTOBER 2020 Center Proprietary – Terms of CANFSA Membership Agreement Apply

Ultimate Tensile Strength Predictions

Industrial Relevance

- Multiple stress-strain curves are represented in a single plot

Implications:

- AM Ti-6Al-4V
- other AM alloys
- process-agnostic
- informed by "material state"
- elastic AND plastic behavior

FALL CANFSA MEETING – OCTOBER 2020 Center Proprietary – Terms of

Challenges & Opportunities

- Represent stress-strain behavior as a function of "material state"
 - Determine the microstructure and defect structure dependence of the KM model coefficients
 - Assessment of model uncertainty and identification of potential sources of variability
- Process-agnostic predictions of stress-strain behavior
 - Elastic AND plastic
- Applicability to a wide variety of AM materials and AM processes (with and without heat treatments)
 - Beta titanium alloys, aluminum alloys, steels

Thank you! Andrew Temple ajtemple@iastate.edu

References

- [1] Hayes, Brian J., et al. "Predicting tensile properties of Ti-6Al-4V produced via directed energy deposition." Acta Materialia 133 (2017): 120-133.
- [2] Kleemola, H. J., and M. A. Nieminen. "On the strain-hardening parameters of metals." Metallurgical transactions 5.8 (1974): 1863-1866.
- [3] Vinogradov, A., I. S. Yasnikov, and Y. Estrin. "Irreversible thermodynamics approach to plasticity: dislocation density based constitutive modelling." Materials Science and Technology 31.13 (2015): 1664-1672.