I/UCRC Executive Summary - Proje		Date: October 2020
Center/Site: CANFSA/Colorado School of Min	es	
Tracking No.: 36E: In-Situ Characterization of		E-mail : brodgers@mines.edu
Evolution During Simulated Additive Manufactu Alloys	ing in Model	Phone : (720) 413–4542
Center/Site Director: CANFSA/M. Kaufman/I Clarke	P. Collins/A.	Type: (Continuing)
Project Leader: Brian Rodgers		Proposed Budget: \$240-320K, Leveraged
Project Description : Conduct spot melts and Photon Source (APS) with in-situ radiography in melt pools correlated to the APS melts pools for information about thermal gradients. Solidificat obtained from simulations will be combined wit behavior of materials under different conditions	maging. This will I r verification of so ion velocities fron h microstructural	be coupled with ex-situ simulations of the blid-liquid interface velocities and to obtair n APS radiography and thermal gradients
Experimental plan : As-solidified samples of <i>i</i> the top-down via SEM before sectioning. Once shen imaged via SEM and EBSD. Simulation wo	sectioned, sample	s will be polished into the centerline and
Related work elsewhere : This project is a puniversity sites, mainly on alloys from the INCC on electron beam additive manufacturing, while	ONEL series and T	i-6Al-4V. These other projects also focus
How this project is different: Other studies systems, while this project is centered around a solidification behavior, rather than analyzing th Milestones for the current proposed year:	model alloys. The e performance of Top-down micros	goal is to understand fundamental a single alloy under specific conditions. structural analysis of APS samples is
underway, in addition to radiography analysis f Deliverables for the current proposed yea Mo APS samples, determination of solidification simulations to determine thermal gradients in <i>A</i> pool shape to ensure accuracy.	r: Top-down imag velocities by ana	ges of microstructures in Al-Ag and Ni-Al- lyzing APS radiography data, FLOW-3D
How the project may be transformative and been performed on slow solidification velocity s phenomena uniquely seen at high velocities and additive manufacturing, to expand into more al alloy design for additive manufacturing. Contro producing unique microstructures, such as addi parts.	cenarios such as d gradients will fa loy systems. Thes l of solidification o	casting. A deeper understanding of the cilitate advanced technologies, such as se results may also facilitate concepts for conditions may lead to opportunities for
Research areas of expertise needed for pr SEM with EBSD and post-processing to evaluate		
Potential Member Company Benefits: Enha under rapid solidification conditions, with applic		
Progress to Date: A matrix of AI-Ag and Ni-AI experiments with processing parameter variation radiography is underway with code developed by samples has started. Initial simulations of APS	ons have been cor by students within melt pools using a	mpleted at the APS. Analysis of APS CANFSA. Top-down imaging of APS analytical equations and melt pool shape
comparisons to evaluate the relative effect of h	eat transfer phen	omena has been performed.

The Executive Summary is used by corporate stakeholders in evaluating the value of their leveraged investment in the center and its projects. It also enables stakeholders to discuss and decide on the projects that provide value to their respective organizations. Ideally, the tool is completed and shared in advance of IAB meetings to help enable rational decision making.