

Center for Advanced **Non-Ferrous Structural Alloys** An Industry/University Cooperative Research Center

Project 32-L: Algorithmic Analyses of X-Radiography and Computed Tomography for Multiscale Structural **Investigations of Metals**

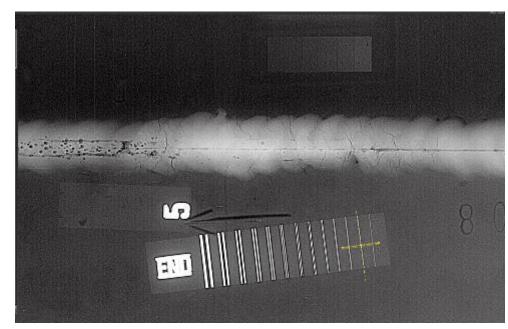
Fall Meeting October 13th – 15th 2020

- Student: C. Gus Becker (Mines)
- Faculty: Dr. Amy Clarke (Mines)
- Industrial Mentors: Dr. Michelle Espy (LANL: E-6 Non-Destructive Testing)

Project 32-L: Development of Cabinet-Based X-Ray Computed Tomography Methods for Studies of Microstructures and Defects in Metals

 Student: C. Gus Becker (Mines) Advisor(s): Amy Clarke (Mines) 	Project Duration PhD: August 2017 to May 2021
 <u>Problem:</u> Industrial processes of metals such as casting and additive manufacturing can benefit from static/dynamic radiography, but user facilities have technique and access limitations. <u>Objective:</u> Analyze existing radiography and tomography data and establish cabinet-based x-ray capabilities at Mines for further experimentation. <u>Benefit:</u> Identify technique limitations for defect detection in AM metals and studies of solidification. 	 <u>Recent Progress</u> Performed XCT of AM lattice structures using Zeiss Xradia 520 Versa Micro-CT at Mines Segmented IDOX crystals in 3D XCT dataset of mock HE sample Deployed web app to fit polynomial expressions to interface location data from experiments at the the APS AM simulator

Metrics		
Description	% Complete	Status
1. Establishment of high-energy micro-focus x-ray capabilities at Mines	90%	•
2. XCT of SNL AM lattice structures Micro-CT at Mines	20%	•
3. Web app for solid-liquid interface velocity analysis of the APS AM simulator data	75%	•
4. Dynamic XCT of SNL AM lattice structures during deformation	0%	•
5. pRad of SNL AM lattice structures	0%	•


FALL CANFSA MEETING - OCTOBER 2020

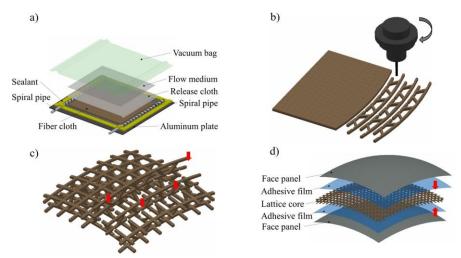
Center Proprietary – Terms of CANFSA Membership Agreement Apply

Industrial Relevance

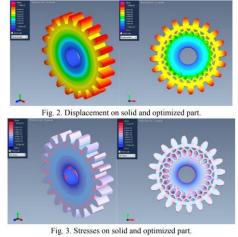
- Identify defects in additively manufactured (AM) builds by non-destructive imaging
 - Qualification and certification
 - Technique limitations
- Weld inspection
 - Safe and stable welds
 - Failure points, inclusions, porosity

http://solutionsinimaging.com/industrial-applications/weld-inspection/

Industrial Relevance



- In-situ x-ray imaging of dynamic materials processes to inform model development
- Establishment of x-ray radiography and computed tomography (CT) cabinet at Mines
 - Characterization of materials for thesis
 - Support ongoing projects
 - Consideration of future projects from industry
 - Accommodates custom/flexible experimental platforms (solidification: casting, welding, AM, etc.; deformation: tension, compression, etc.)

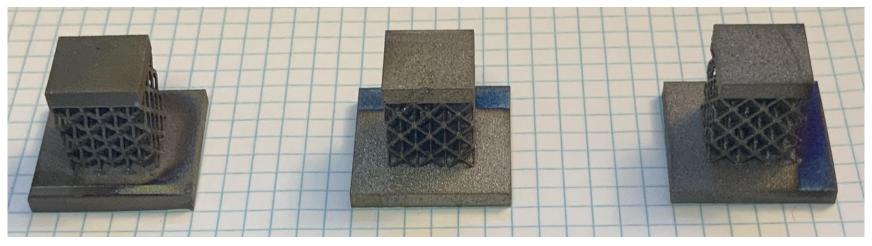

Industrial Relevance

- Applications of AMbuilt lattice structures
 - Lattice-sandwich engine hood: 25% of weight for better pedestrian safety performance
 - Spur gear using honeycomb lattice structure: 19% volume reduction with same strength

S. Yin et al., Compos Struct, 201 (2018) 131-140.

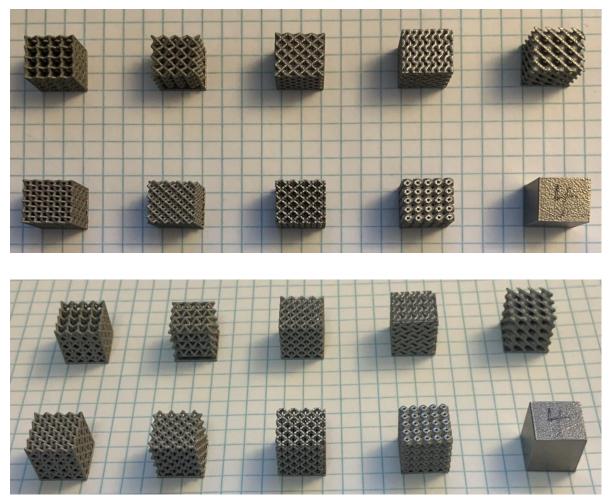
A. J. Kulangara et al., Mater Today, 5 (2018) 5068–5073.

Cabinet Timeline



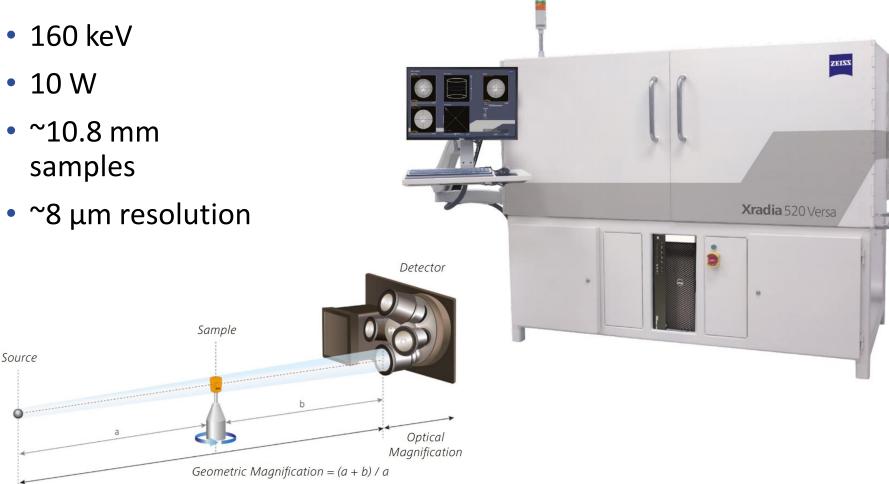
Process Donation Internally (LANL)	Ship to White Rock, NM	Ship to Santa Clara, CA for Refurbishing	Prepare LabInstall NewSpace forMicro-FocusSystemSystem		Ship to Mines and Install
Complete	Complete	Complete	Ready	New Tube Shipped	ETA: December

Ti-5553 Lattices from LANL



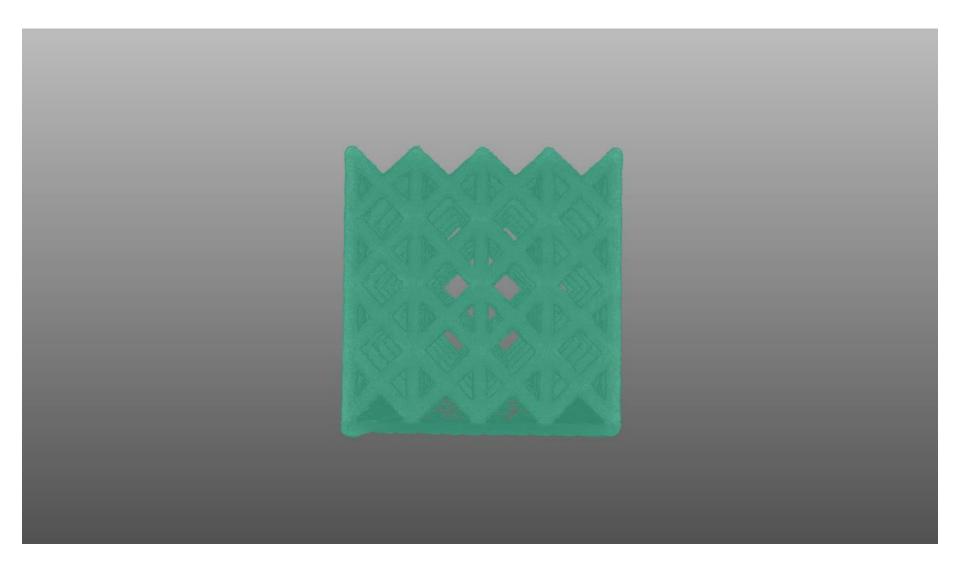
6 squares = 1 in

Ti-64 Lattices from SNL

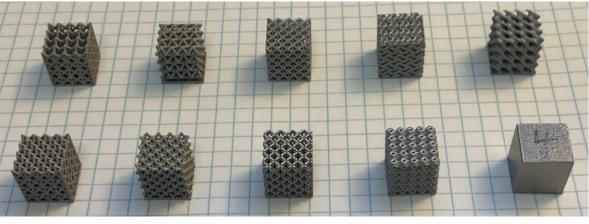


6 squares = 1 in

Micro-CT with Zeiss Xradia 520 Versa at Mines



- 160 keV
- 10 W
- ~10.8 mm samples
- ~8 μm resolution


Ti-64 Lattice 01

Ti-64 Lattices

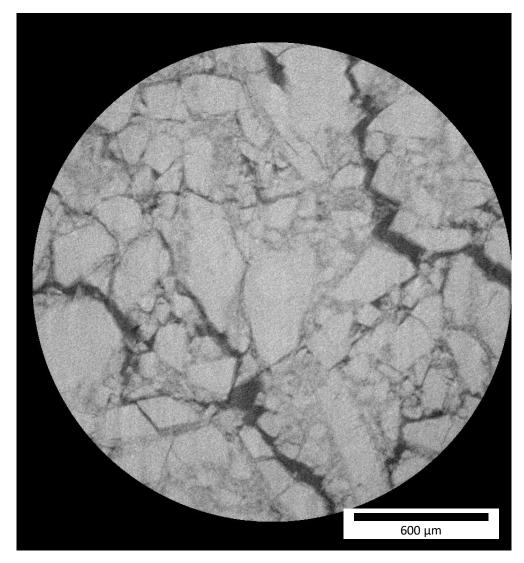
- Static imaging
- Proton radiography (pRad) at Los Alamos Neutron Science Center (LANSCE) in December
- Pick samples for deformation imaging

6 squares = 1 in

- Lattice 01
- Lattice 02
- Lattice 03
- Lattice 04
- Lattice 05
- Lattice 06
- Lattice 07
- Lattice 08
- Lattice 09
- Lattice 01

Mock-HE Lattices

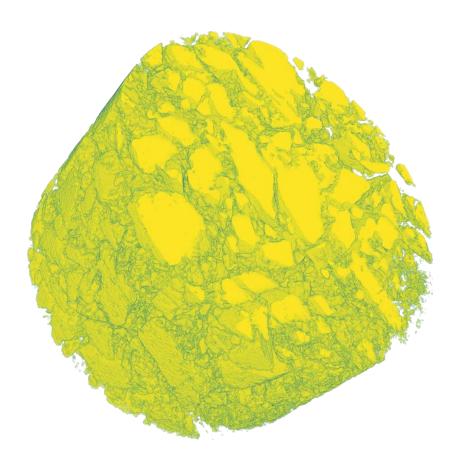
- Finite element simulation of AM-built 1,6-hexanedol diacrylate (HDDA)
- Simulates near instantaneous velocity rise at sample surface of gas gun loading

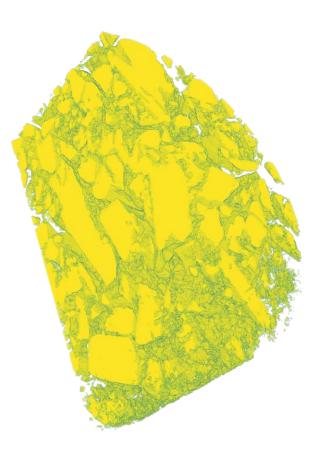


J. A. Hawreliak et al., Scientific Reports, 6 (2016).

Mock HE from LANL

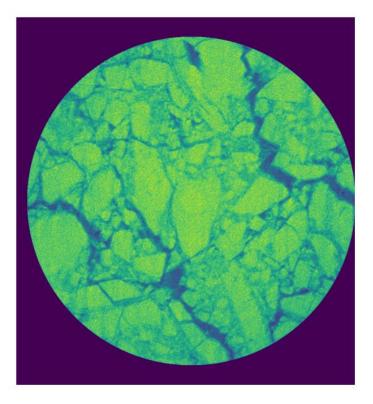
- High explosives (HE) replaced with mock HE during testing for safety
- 5-lodo-2'-deoxyuridine (IDOX) crystals embedded in binder
- Surrogate for cyclotetramethylenetetranitramine (HMX)

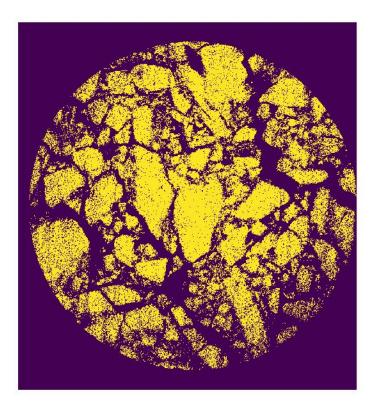



J.D. Yeager et al., J. Energ. Mater. 36 (2018) 253–265.

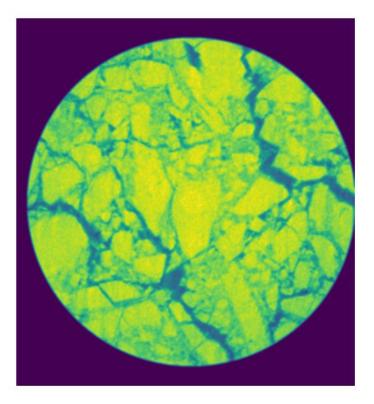
FALL CANFSA MEETING - OCTOBER 2020

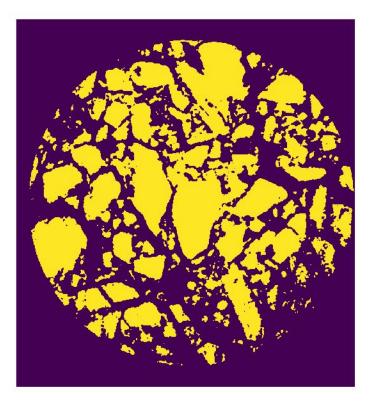
Mock HE from LANL

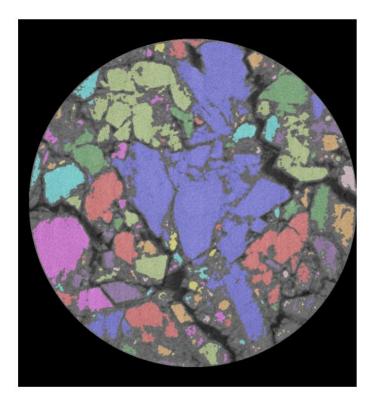

600 µm

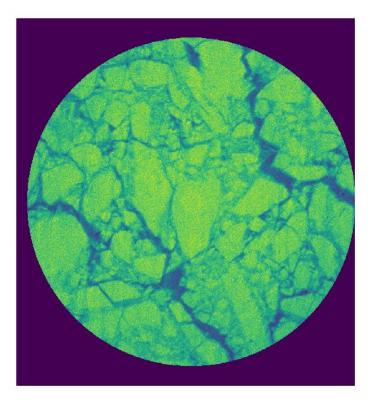

J.D. Yeager et al., J. Energ. Mater. 36 (2018) 253–265.

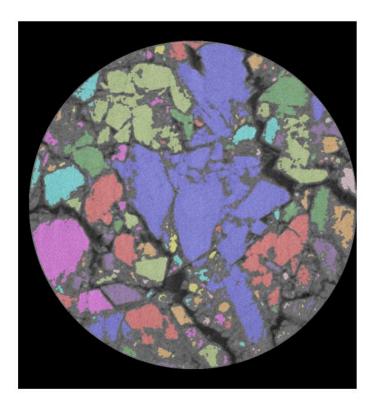
FALL CANFSA MEETING – OCTOBER 2020

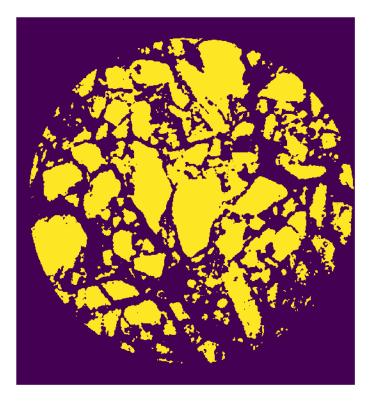

Center Proprietary – Terms of CANFSA Membership Agreement Apply

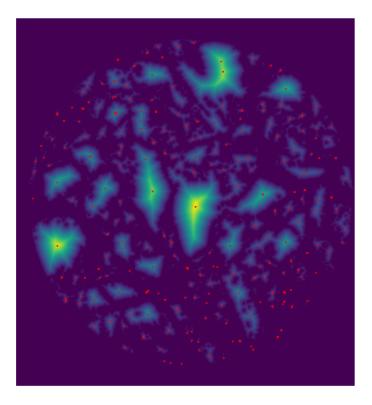


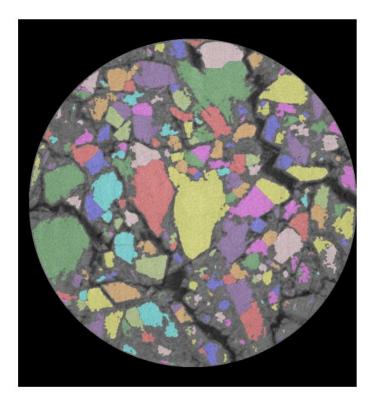


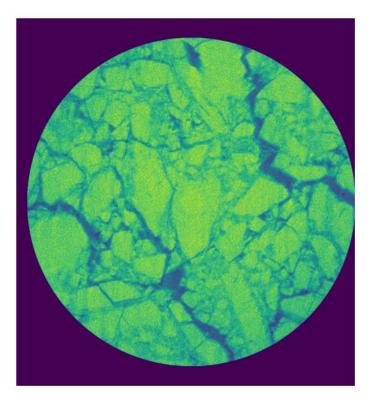


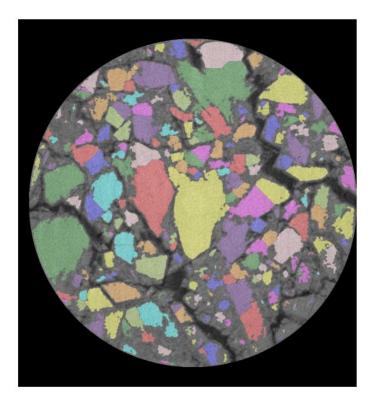


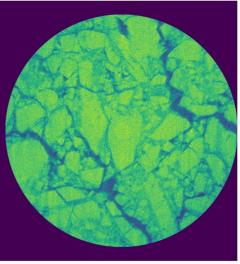


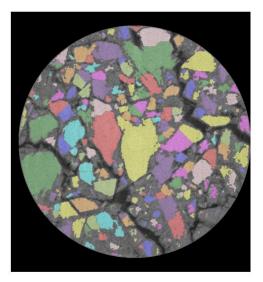


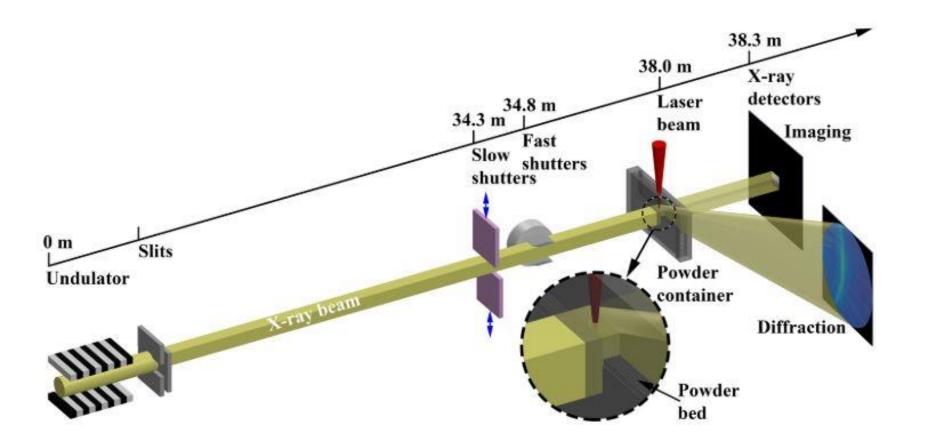






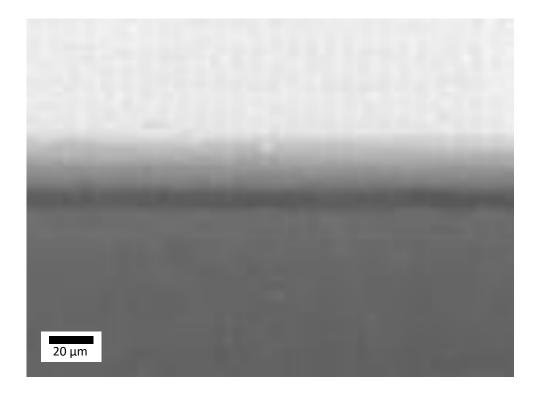





- Improve watershed segmentation
 - Improve seed from local max of distance
 - Psuedo-flatfield correction on base image to improve thresholding
- Bring segmentation to 3D
 - StarDist: Object detection with starconvex shapes
 - Pre-trained ML algorithms
 - ImageJ plugin
 - Python library

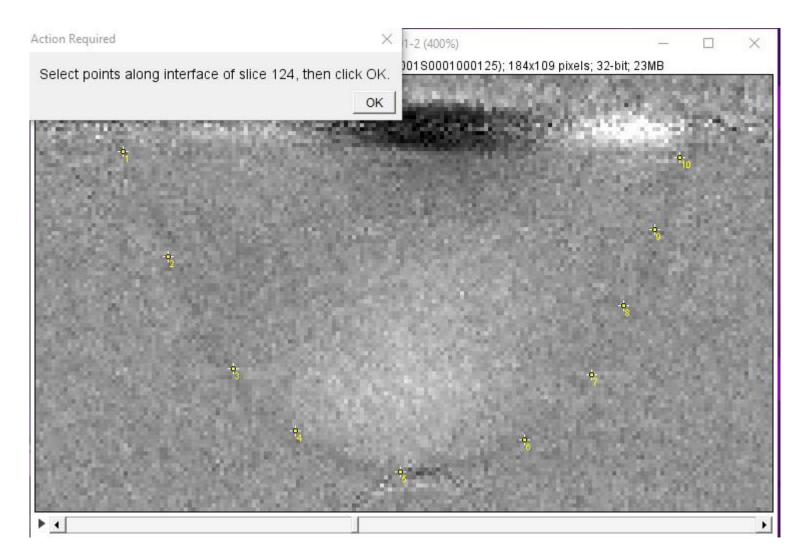
AM Simulator at the APS

C. Zhao et al., Scientific Reports, 7 (2017) 1-11.


FALL CANFSA MEETING - OCTOBER 2020

Center Proprietary – Terms of CANFSA Membership Agreement Apply

AM Simulator Example Experiment from the APS

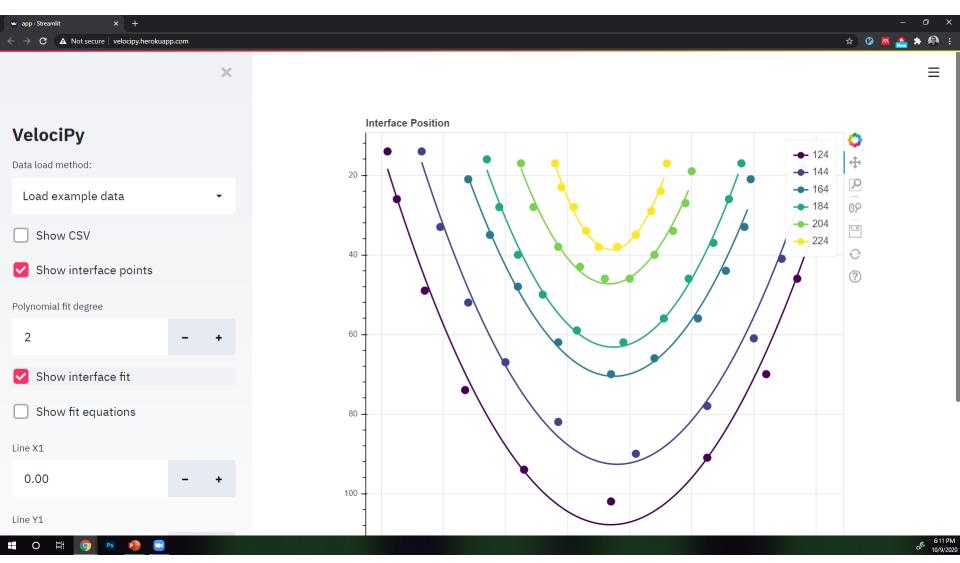

- Ni-based alloy
- Laser power: 108 W (20% max)
- 2 ms dwell time

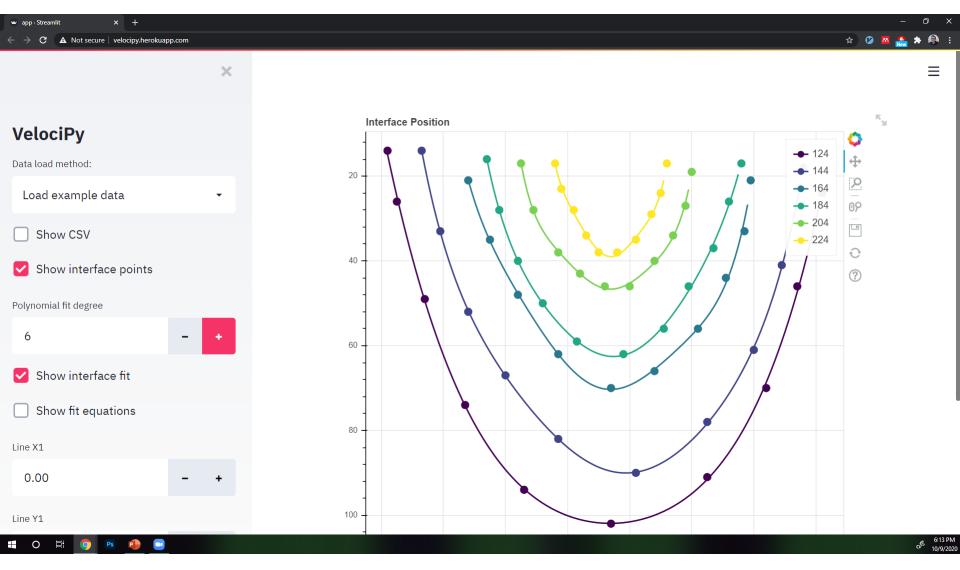
script:C:\Users\gusb\Python\s-I_interface_tra	acking\interface_tracking.ijm X	(
Directory containing images to be measured	13_Shot02_Ti10023_30pct_1.0ms_ Browse]
Processing method	Divide each by preceding image	
Increment to add between images	20 -	
Name of user (no spaces)	gusb	
ОК	Cancel	

	Α	В	С	D		
1		Х	Y	Slice		
2	1	22	14	124		
3	2	25	26	124		
4	3	34	49	124		
5	4	47	74	124		
6	5	66	94	124		
7	6	94	102	124		
8	7	125	91	124		
9	8	144	70	124		
10	9	154	46	124		
11	10	162	24	124		
12	11	33	14	144		
13	12	39	33	144		
14	13	48	52	144		
15	14	60	67	144		
16	15	77	82	144		
17	16	102	90	144		
18	17	125	78	144		
19	18	140	61	144		
20	19	149	41	144		
21	20	156	18	144		

http://velocipy.herokuapp.com/

🛥 app · Streamlit × +	
← → C ▲ Not secure velocipy.herokuapp.com	x) 🖉 🔤 🤮
×	
VelociPy	
Data load method:	
Load data from CSV 🔹	
Select CSV file:	
Drop files here to upload or	
browse files	
	Made with Streamlit


• app · Streamlit × + $\leftrightarrow \rightarrow \mathbf{C}$ A Not secure velocipy.herokua	
$\leftarrow ightarrow {f C}$ 🛕 Not secure \mid velocipy.herokua	pp.com
ValasiDv	
VelociPy	
Data load method:	
Load example data	•
Show CSV	
Show interface points	
Polynomial fit degree	
2	- +
Show interface fit	
Line X1	
0.00	- +
Line Y1	
0.00	- +
🛯 O 🗏 🧿 🖪 🔒 🛢	


• Streaml		× +		
G	A Not sec	ire velocipy.	herokuapp.com	
				×
eloc	iPv			
a load r	method:			
oad c	xample	data		-
Sud e	Admpte	auta		
Sho	w CSV			
, 5110				
		Х	Y	Slice
Θ	1	22	14	124
1	2	25	26	124
2	3	34	49	124
3	4	47	74	124
4	5	66	94	124
5	6	94	102	124
6	7	125	91	124
7	8	144	70	124
8	9	154	46	124
9	10	162	24	124
10	11	33	14	144
Sho	winter	ace poir	nte	
510	w mien	ace poli	113	

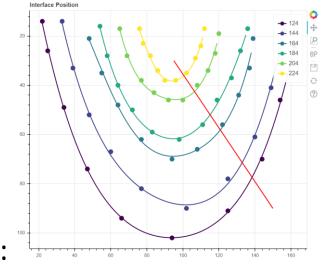
🖶 O 🛱 🧿 🖪 🖬

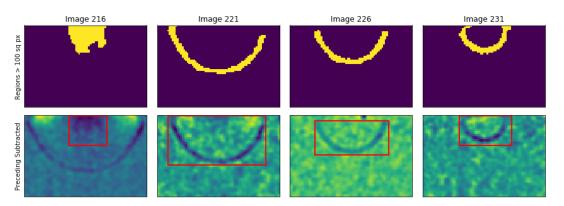
FALL CANFSA MEETING – OCTOBER 2020 Center Proprietary – Terms of C

Center Proprietary – Terms of CANFSA Membership Agreement Apply

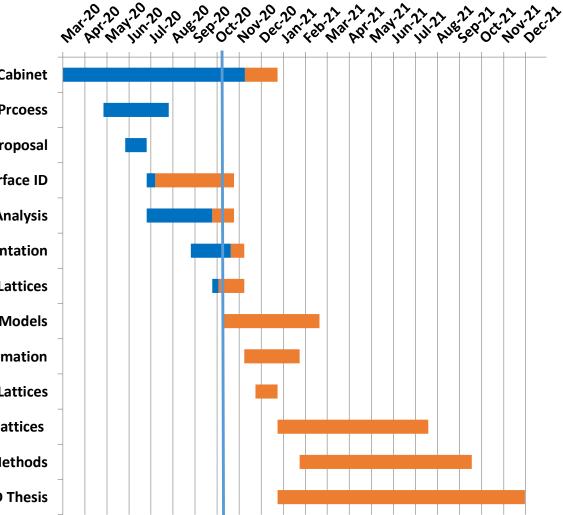
FALL CANFSA MEETING – OCTOBER 2020 Ce

Center Proprietary – Terms of CANFSA Membership Agreement Apply


p · Streamlit × +										
C A Not secure velocipy.herokua	app.com								☆	
Snow in equations		-			+	+		+		
X1		20	40		60	80	100	20	140 160	
5.00	- +		Slice			Equation	n X Int	ersection	Y Intersection	n
		Θ	124	y=-89.0	052027069636	044*x^0+6		134.3615	82.6074	1
Y1		1	144	y=-434	.32824376584	l43*x^0+3…		128.5727	75.0176	5
1		2	164	y=-1912	2.6086559682	251*x^0+1…		116.9341	59.7582	1
1.00	- +	3	184	y=-317	0.7488850506	68*x^0+2		112.5012	53.9462	1
		4	204	y=-389	08.802122836	51*x^0+2		104.1790	43.0347	7
<2		5	224	y=-376	759.65380227	/484*x^0+		99.3513	36.7050	Э
12		6	line	y=1.31	1111111111111	11*x-93		NaN	Nat	N
40.00	- +	c.	Slice 1 S	Slice 2	Distance					
		Θ	124	124	O					
2		1	124	144	9.5454					
00	- +	2	124	164	28.7368					
90.00 - +		3	124	184	36.0464					
Show line		4	124	204	49.7692					
		5	124	224	57.7300					
Show line equation		6	144	124	9.5454					
en me equation		7	144	144	Θ					
how intersection calcu	lations	8	144	164	19.1914					
		9	144	184	26.5010					
Show distance calculation	ons	10	144	204	40.2238					


🕂 O 🗄 🧿 🖪 🗐

- Things to add to VelociPy:
 - Add ability to import image as background
 - Add different file types for exporting data
 - Add control for which data is exported
 - Add more diverse colormap options
- Further down the data processing pipeline:
 - Improved automated interface identification
 - ML interface identification



Progress

Installation of Microfocus Cabinet

Manual Interface ID Prcoess

PhD Proposal

ML Interface ID

GUI for Interface Velocity Analysis

IDOX Crystal 3D Segmentation

Micro-CT of SNL Lattices

Comparison Between CT and Build Models

Dynamic Micro-CT of SNL Lattice Deformation

pRad of of SNL Lattices

Cabinet-Based CT of Lattices

Comparison Between CT Methods

PhD Thesis

Challenges & Opportunities

- Cabinet-based x-radiography possibilities
- Streamlit and Heroku for deployable data science GUIs like VelociPy
 - -<u>http://velocipy.herokuapp.com/</u>
- Automating the S-L interface analysis pipeline
 - Traditional image processing
 - ML model deployment

Thank you!

C. Gus Becker

<u>chbecker@mines.edu</u>

References

- Yin, S, Chen, H, Wu, Y, et al. Introducing composite lattice core sandwich structure as an alternative proposal for engine hood. Compos Struct 2018; 201: 131–140.
- Kulangara, AJ, Rao, CSP, Subhash Chandra Bose,
 P. Generation and optimization of lattice structure on a spur gear. Mater Today: Proc 2018; 5: 5068–5073.
- **3.** J. A. Hawreliak et al., *Scientific Reports*, 6 (2016).
- 4. C. Zhao et al., *Scientific Reports*, 7 (2017) 1-11.
- 5. J.D. Yeager, A.L. Higginbotham Duque, M. Shorty, P.R. Bowden, J.A. Stull, Development of inert density mock materials for HMX, J. Energ. Mater. 36 (2018) 253–265.