

Center for Advanced Non-Ferrous Structural Alloys An Industry/University Cooperative Research Center

Metamorphic Manufacturing

Fall 2020 Videoconference October 13-15, 2020

Students: Lauren Drew (Mines Undergraduate)

Gabriella Tuell (Mines Undergraduate)

Faculty: Kester Clarke (Mines)

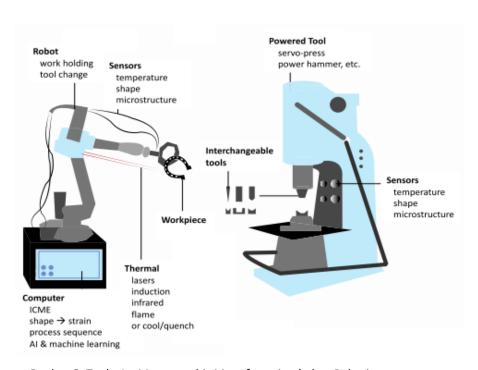
Industrial Mentors: TBD

Metamorphic Manufacturing

- Student(s): Gabriella Tuell, Lauren Drew (Mines)
- Advisor: Kester Clarke (Mines)
- <u>Problem:</u> Traditional manufacturing techniques are highly inefficient, costly, and time-consuming.
- Objective: Develop robotic controls to automate the blacksmithing process, enhance mechanical properties, and decrease the number of finishing processes required to meet specifications.
- Benefit: Metamorphic Manufacturing could prove to be a low-cost, low-risk alternative to traditional forging and metal printing processes in the creation of specialized parts.

Project Duration

May 2020 - May 2021 (REU & MURF)


Recent Progress

- Achieved an understanding of traditional blacksmithing techniques.
- Created a list of control variables to fully automate the forging process.
- Designed an axisymmetric rotary shaft to serve as an indication of future process applications.
- Developed a deformation process utilizing a rotolinear actuator and hydraulic press.
- Annealed Aluminum 1/2 in, 1 in, and 2 in bars.

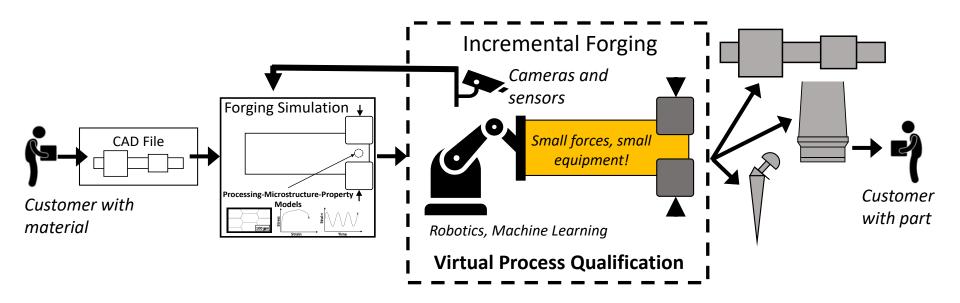
Metrics		
Description	% Complete	Status
Background research, literature review	50%	•
2. Blacksmithing proficiency and identification of control variables	80%	•
3. Rotary shaft and deformation process design	75%	•
4. Programming and hardware interface	5%	•
5. Analysis of mechanical properties and microstructure	0%	•

Industrial Relevance

Daehn, G. Taub, A., *Metamorphic Manufacturing (a.k.a. Robotic Blacksmithing):The Third Wave of Digital Manufacturing*. National Network for Manufacturing Innovation: Lightweight Metals Institute, 2018

Applications:

- A wide range of industries that currently utilize close-die forging including
 - Automotive
 - Aerospace
 - Agriculture
 - Defense
 - Oil & Gas

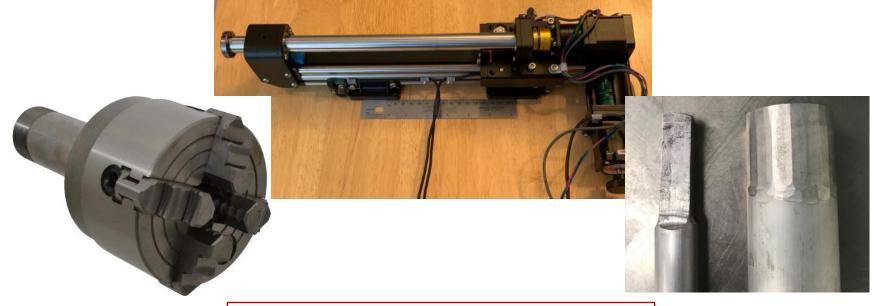

Benefits:

- Customizable component geometries
- Maintain performance while ensuring manufacture of components is economically viable
- Enhanced material properties
- Increased efficiency, decreased waste

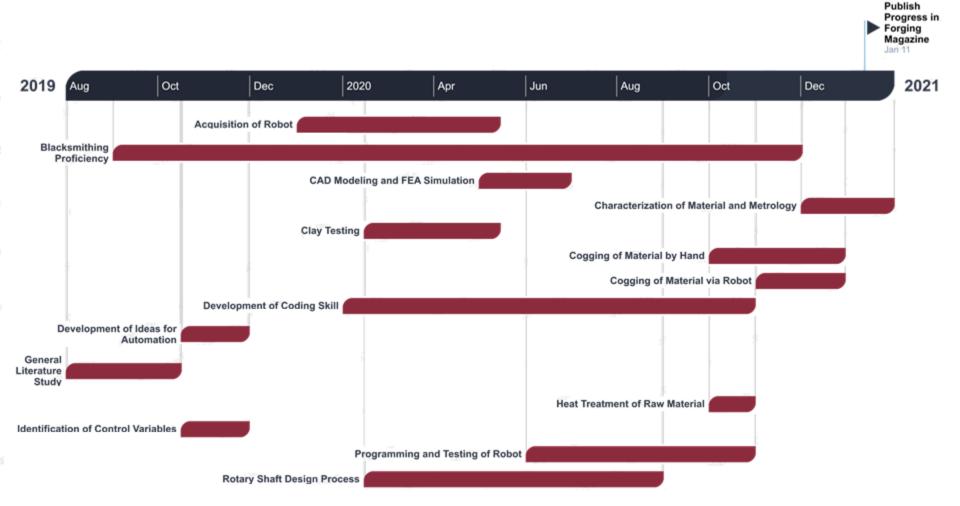
Metamorphic Manufacturing

SolidWorks DEFORM Physical Simulation Deformation

Summary of Research Tasks


- Phase 1: Determination of pathways in conjunction with forging press
 - Development of traditional blacksmithing skills and hydraulic press use for Gabriella Tuell
 - Simulation and modeling of proposed component using CAD tools

Summary of Research Tasks



- Phase 2: Operation of robotic components
 - Use of IMAC controls to operate linear actuator
 - Programming hardware interface (DEFORM and IMAC controls)
 - Annealing 1 in., 1.5 in., and 2 in. bars [3]
 - Chuck attachment for linear actuator
 - Room temperature aluminum deformation with the linear actuator and hydraulic press

Progress

Challenges & Opportunities

- Immediate Challenges
 - Designing attachment component for linear actuator to hold material
 - Limited deformation of annealed aluminum at room temperature
- Future Concerns
 - Sensing and feedback of complex pathways (metrology, control variables)
 - Underdeveloped standards and specifications
 - Predicted performance validation for component geometries

Thank you!

Gabriella Tuell

Lauren Drew

gtuell@mines.edu

drew@mines.edu

References

- [1] Metamorphic Manufacturing: Shaping the Future of On-Demand Components, vol. 1. Pittsburgh, PA: The Minerals, Metals and Materials Society, 2019.
- [2] Daehn, G. Taub, A., Metamorphic Manufacturing (a.k.a. Robotic Blacksmithing): The Third Wave of Digital Manufacturing. National Network for Manufacturing Innovation: Lightweight Metals Institute, 2018
- [3] "Heat Treating of Aluminum Alloys," ASM Handbook, Volume 4: Heat Treating, vol. 4, pp. 841–879, 1991.