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(hopetully disarming to the rationally doubtful)

#1). Machine learning / artificial intelligence is powerful, and therefore widely pursued with a great many
papers being published...

...but, often, it is adopted without thought, and the number of papers does not relate to the quality of the work,
but the popularity and “citability” of the topic. This is enormously risky!!

#2). They can be used for a variety of problems: recognition/classification, correlation, simulation of ‘fakes’, ...

...but let us simplify and say they all seek to correlate Xi’s with Y’s, even if Xi’s are rarely presented

#3). The ‘promise’ is that ML/AI will provide us great new insights and permit challenging problems to be
“automatically solved”...

...but new insights are only helpful if we can interpret them and extrapolate beyond our training sets for new
problems...

...and, there is nothing “automatic” about most good ML/Al work

#4). We know many of the physics of many of our problems, and there is a gulf between ML/Al and our
fundamental physics...

...but this is simply a problem that hasn’t been solved
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Some background:

A few words on ML/AI
Fundamentally, ML/Al techniques seek to correlate (map) inputs with outputs.

The easiest way to ‘accurately’ imagine ML/Al is to consider a N-variable manifold
(hypersurface).

The underlying basis vectors are the input variables (Xi’s) that affect the output Y, and
the hypersurface is a map of Y for all Xi’s.

Some consequences:

Locally ‘flat’, meaning that similar sets of Xi's

will give similar Y.

S (underpins various networks, including those
| focused on classification, ANNs, GANSs, etc)

FF Typically relies upon flexible mathematical
S Z equations.
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A bit more background:

A simple neural network

input hidden  output Bias
layer layer layer

Input,

Input, “w;x; Transfer

) Output
function P

Input;

Architecture
of a neural h—tanh(S w,ix, + 0,1

v=2_(wiZ h,2 + 6,2)
network

Neural networks use very flexible functions (e.g., tanh, ReLU, Softmax, Logistic Sigmoid,
Standardization, ...), and architect them using weights, biases, and summations...

An unusual way of thinking of these: You can think that these functions modify the underlying
data until the summation gives an output with acceptable performance.

In other words, these functions perform affine transforms on the data...until it
approaches/approximates the manifold/hypersurface/hull

About 10 years ago, we asked: Is it not possible that two equations represent
the same ‘response surface’
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Some prior work:

onte
Carlo

physics

Errors of
“Best ANN”

Virtual Experiments
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tanh
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Some prior work: SHCANESA

Virtual Experiment: Yield Stress on Thickness of o laths
([ heat-treated)
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Problem: Scatter in data — when « lath width varies Using Bayesian Neural Networks — Virtual
other microstructural variables are also varying (CSF, experiments — Vary only the a lath width
Vol. frac. a, PBGF) while keeping other variables constant

Avoid overfitting: risk of obtaining higher order manifolds than necessary
(this harkens to statistics, error, and perceptrons)
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GA-derived phenomenological equation
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Some current work: SLCANESA

ON-FERROUS STRUCTURAL ALLOYS
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Returning to My point of view:

#3). The ‘promise’ is that ML/Al will provide us great new insights and permit challenging
problems to be “automatically solved”...

...but new insights are only helpful if we can interpret them and extrapolate beyond our
training sets for new problems...

...and, there is nothing “automatic” about most good ML/Al work

#4). We know many of the physics of many of our problems, and there is a gulf between
ML/AI and our fundamental physics...

..but this is simply a problem that hasn’t been solved

Revisiting our hypothesis: Is it not possible that two equations represent the
same ‘response surface’
Surely an expansion would work — perhaps Taylor series??
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Returning to my point of view:
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Abstract: This paper presents a new theorem by which physical phenomenon and their associ-
ated laws and theories can be learned from highly flexible mathematical functions exploited in
neural networks. We provide a methodology in which formulae of both hypothesized physical
mechanisms and neural networks can be re-expressed using their Fourier series expansions. By
20 invoking the uniqueness theorem, the coefficients of the Fourier series expansions of the basis
functions of the neural networks are shown to correspond to those of physical phenomena, ena-
bling the structure of a neural network for a data corpus to be rewritten into their physicum op-
erandi — or vice versa. This approach not only provides new interpretability to a variety of ma-
chine learning/artificial intelligence approaches, but also permits known physical information to

25 pre-structure those methods.
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Figure 1. Schematic showing the construction of an
ML model (left branch) and a candidate constitutive
relationships (right branch), each expanded on a Fou-
rier basis set. Since both are supported by the same
basis, the Fourier coefficients of the two expansions
are directly comparable.
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We were wrong on Taylor series expansion — the radius of convergence collapses to zero, and it
doesn’t work.

It is necessary to have a series with a non-vanishing radius of convergence — a property of the
Fourier series expansion

THIS WORKS (and we have proven so — we think)

Physical phenomena are absolutely and directly interpretable from ML/AI

Only the NN architecture and activation functions are required to determine a functional
relationship — in other words, once solved once, this is a fast process.

Physics can preseed NNs

If some physics are known, some physics can preseed ‘classes’ of architectures

This overcomes the main barriers of ML/AI:

extrapolation vs. interpolation and no connection to fundamental science/knowledge
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Additional Outcomes

We have developed the maths for accuracy/error.
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The problem is currently ugly, but a candidate for supercomputing and arguably quantum

We have started to sort out candidate functions

Other functions (including time dependent phenomenon) should be possible

Table 1. Common activation functions for neural networks.
T

Name ) =
e”i -
Softmax — Z = Z e*n
n=1
X x=>0
Rel.U {0. x<0
Logistic Sigmoid :
. o 1+e™*
. X U
Standardization o
o o
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Table 2. Example constitutive functions and their Fourier coefficient generating functions. In x, the natural loga-
rithm; C(x) = [ : cos t2 dt, the Fresnel Cosine Integral; S(x) = f: sin t2 dt, the Fresnel Sine Integral; E, (x) =
) 1°° e™**/t"dt, the Exponential Integral; and I'(x, @) = fam t*~le~tdt, the Incomplete Gamma Function.
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Closing thoughts

Two methods, both alike in dignity,

In fair sciences, where we lay our scene.

From ancient elegance break to methods mutinous,
Where machine learning makes physical laws unclean,
From forth the noble loins of these two foes

A pair of cross-term'd numbers seek their place;

Whose serial expansions, equally covariant

Do with their projections, bury their parents strife.
Our fearful assessment of their dual-space truth,
And the continuance of their parents, sage,

Which, for their children's union, sought to achieve,

Is now the two hours' traffic of our stage;

The which, if you with patent eyes attend,
What here shall miss, our toil shall strive to mend.
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