

## Center for Advanced **Non-Ferrous Structural Alloys** An Industry/University Cooperative Research Center

#### Project 33a-L: In-Situ Studies of Strain Rate Effects on Phase Transformations and Microstructural Evolution in β Titanium

## Summer Meeting June 30<sup>th</sup> , 2020

- Student: Benjamin Ellyson(Mines)
- Faculty: Prof. Amy Clarke (Mines)
- Industrial Mentors: Austin Mann (Boeing), Clarissa Yablinsky (LANL), John Foltz (ATI)
- Other Participants: Jonah Klemm-Toole (Mines)







#### Project 33a-L: In-Situ Studies of Strain Rate Effects on Phase Transformations and Microstructural Evolution in β-Titanium



| <ul><li>Student: Benjamin Ellyson (Mines)</li><li>Advisor(s): Amy Clarke (Mines)</li></ul>                                                                                                                                                                                                                                                                                                                     | Project Duration<br>PhD: September 2017 to May 2021                                                                                                                                                                                                                                                                                                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li><u>Problem</u>: Uniform elongation and work hardening of titanium alloys restricts applications</li> <li><u>Objective</u>: Fundamentally understand microstructural evolution in metastable β titanium alloys to develop an alloy design methodologies and tailor microstructures and properties</li> <li><u>Benefit</u>: Novel titanium alloys for blast and crash resistant applications</li> </ul> | <ul> <li><u>Recent Progress</u></li> <li>Transmission electron microscopy (TEM) of aged<br/>Ti-10V-2Fe-3AI (wt.%) (Ti-10-2-3) tensile<br/>specimens is underway</li> <li>New high-strength low-temperature aged condition<br/>discovered for Ti-10-2-3</li> <li>Progress has been made in processing in-situ<br/>Advanced Photon Source (APS) data</li> </ul> |

| Metrics                                                                     |            |        |  |  |  |  |  |  |
|-----------------------------------------------------------------------------|------------|--------|--|--|--|--|--|--|
| Description                                                                 | % Complete | Status |  |  |  |  |  |  |
| 1. Literature review                                                        | 80%        | •      |  |  |  |  |  |  |
| 2. Quasi-static mechanical characterization of Ti-10-2-3 and Ti-15Mo        | 95%        | •      |  |  |  |  |  |  |
| 3. Dynamic testing of Ti-10-2-3 and Ti-15Mo                                 | 70%        | ٠      |  |  |  |  |  |  |
| 4. Microstructural characterization of pre- and post-deformation samples    | 70%        | •      |  |  |  |  |  |  |
| 5. In situ characterization of microstructural evolution during deformation | 40%        | •      |  |  |  |  |  |  |

marine engines

https://www.onr.navy.mil/Science-Technology/Departments/Code-33

**Propulsion Materials Program** 

– Aircraft and

SUMMER CANFSA MEETING – JUNE 2020

management

– Thermal

- Blast resistance
- Multifunctional structures

**Cellular Materials** 







#### Ti-25Nb-3Zr-3Mo-2Sn (wt.%) Alloy Microstructure After Deformation

Compression at 10<sup>-3</sup> to 0.18 true strain



H. Zhan, et al. 107 Scripta Materialia (2015): 34-37



#### Multi-scale Studies of TRIP/TWIP During High Rate Deformation





TRIP: Transformation Induced Plasticity, TWIP: TWinning Induced Plasticity, DTEM: Dynamic Transmission Electron Microscopy, TEM: Transmission Electron Microscopy, XRD: X-Ray Diffraction, pRad: Proton Radiography, ASTAR: Automatic Crystal Orientation and Phase Mapping, MTS: Materials Test Systems

The Effect of Strain Rate on Deformation Mechanisms During Compression of a Ti-10V-3Fe-3AI (wt.%) Alloy



- Deformation mechanisms present at all strain rates :
  - Stress-induced α" martensite
  - $\{332\}<113>\beta$  twinning
  - Stress-induced ω
     phase

– Slip



Strain rate (10<sup>-3</sup> to 10<sup>2</sup> s-1)

Ahmed, M., et al. 104 Acta Materialia (2016): 190-200

## As-Quenched Quasi-static Tension of Ti-10-2-3





#### Artificial Aging of Ti-10-2-3 at 423K and Quasi-static Tensile Testing





## ω-phase in Aged Ti-10-2-3





## **Ex-situ Aging**



• Developed an ex-situ solution to ω-phase aging characterization



Problem : "Comparability" of diffraction and DF measurements

## Solution : Ex-situ TEM aging setup



## Transition to TRIP Inhibited (TI) CANFSA Condition

Aged 7200 s @ 423 K & fractured in tension at 10<sup>-3</sup>



Similar to results reported in : Chen, Wei, et al. *Acta Materialia*, 2019, 170, 187-204. Lai, M. J., Tong Li, and Dierk Raabe. *Acta Materialia*, 2018, 151, 67-77. Mantri, S. A., et al. *Scripta Materialia*, 2017, 130, 69-73. Wang, Weilin, et al. *Materials & Design*, 2020, 186, 108282.

Over-aging of Ti-10-2-3 inhibits stressinduced martensite and causes dislocation bands to form

SUMMER CANFSA MEETING – JUNE 2020

Center Proprietary – Terms of CANFSA Membership Agreement Apply

## **Transition to TRIP Inhibited**

1200





#### **ω-phase Strengthening of Stress**induced Martensite in Ti-10-2-3: Overview and Limits





## APS High-Rate In-situ Kolsky Bar





## **Twinning vs Transformation**



Roughly: Loading begins at frame 25 Yield occurs at frame 30 Fracture occurs at frame 80



Fresh-quenched Ti-1023 exhibits transformation



As-quenched Ti-15Mo exhibits deformation twinning

Green:  $\alpha''$ 

Black: β

SUMMER CANFSA MEETING - JUNE 2020

Center Proprietary – Terms of CANFSA Membership Agreement Apply

Deformation at ~1000 s<sup>-1</sup>

## **APS Initial Results**





Ti-1023 in MTS condition deformed in tension at 1000s<sup>-1</sup>







## **Twinning in TI Radiography**



Evidence of deformation twinning at high strain rate seems to cause TWIP and increased ductility!



SUMMER CANFSA MEETING – JUNE 2020 Center Proprietary – Terms of CANFSA Membership Agreement Apply

8





|                                  | AUS | 1 0 <sup>ct</sup> .1 | Jan 19 | APT. 18 | 111.18 | 00000 | Jan 19 | APT.1 | Jul-19 | OCT | Jan 20 | APr. | 10 111-20 | 000020 | Jan-21 |
|----------------------------------|-----|----------------------|--------|---------|--------|-------|--------|-------|--------|-----|--------|------|-----------|--------|--------|
| 1. Literature Survey and Classes | -   |                      |        |         |        |       |        |       |        |     |        |      |           |        |        |
| Litterature review               |     |                      |        |         |        |       |        |       |        |     |        |      |           |        |        |
| Classes                          |     |                      |        |         |        |       |        |       |        |     |        |      |           |        |        |
| Quals                            |     |                      |        |         |        |       |        |       |        |     |        |      |           |        |        |
| 2. Ti-1023                       |     |                      |        |         |        |       |        |       |        |     |        |      |           |        |        |
| Initial characterization         |     |                      |        |         |        |       |        |       |        |     |        |      |           |        |        |
| Compression study                |     |                      |        |         |        |       |        |       |        |     |        |      |           |        |        |
| Tensile testing                  |     |                      |        |         |        |       |        |       |        |     |        |      |           |        |        |
| High-strain rate testing         |     |                      |        |         |        |       |        |       |        |     |        |      |           |        |        |
| In-Situ Testing                  |     |                      |        |         |        |       |        |       |        |     |        |      |           |        |        |
| 3. Ti-15Mo                       |     |                      |        |         |        |       |        |       |        |     |        |      |           |        |        |
| Initial characterization         |     |                      |        |         |        |       |        |       |        |     |        |      |           |        |        |
| Heat treatment                   |     |                      |        |         |        |       |        |       |        |     |        |      |           |        |        |
| Mechanical Testing               |     |                      |        |         |        |       |        |       |        |     |        |      |           |        |        |
| High-strain rate testing         |     |                      |        |         |        |       |        |       |        |     |        |      |           |        |        |
| 4. Thesis write-up               |     |                      |        |         |        |       |        |       |        |     |        |      |           |        |        |

## **Challenges & Opportunities**



#### Challenges

- COVID-19 has put a pause to many collaborations
- Proper EBSD indexing of martensite remains to be accomplished

#### **Opportunities**

- A publication on the effect of low temperature aging on the strength/ductility of Ti-10-2-3 has been prepared and is ready for submission
- APT reconstructions from Prof. Banerjee are on their way!
- High-strain rate microstructural evolution seems to be markedly different from quasi-static in Ti-1023



## Thank you!

# Benjamin Ellyson bellyson@mines.edu

## **EBSD Trial and Error**



- Martensite is very close in symmetry to BCC : classic indexing cannot differ between the two
- Fine scale of transformation product leads to significant pattern overlap
- β-Titanium alloys are very prone to surface deformation, which strongly affects EBSD reliability
- New electrolyte has proven very reliable at producing high-quality electro-polished surface (perchloric, hydrochloric, methanol & butoxy-ethanol solution)
- New spherical indexing algorithm from De Graef et al. is much more robust to pattern overlap and pseudo-symmetry

## **Synthesis of Tested Materials**



| Alloy | State | Strain Rate       |       |                                   |  |  |  |  |  |
|-------|-------|-------------------|-------|-----------------------------------|--|--|--|--|--|
|       |       | ~10 <sup>-3</sup> | ~10-1 | ~10 <sup>2</sup> -10 <sup>3</sup> |  |  |  |  |  |
| 1023  | AQ    | CSM/CHESS         | CSM   | LANL/ <mark>APS</mark>            |  |  |  |  |  |
| 1023  | MTS   | CSM/CHESS         | CSM   | LANL/ <mark>APS</mark>            |  |  |  |  |  |
| 1023  | TI    | CSM/CHESS         | CSM   | APS                               |  |  |  |  |  |
| 15Mo  | AQ    | CSM/CHESS         | CSM   | LANL/ <mark>APS</mark>            |  |  |  |  |  |
| 12Mo  | AQ    | Х                 | Х     | APS                               |  |  |  |  |  |

2 Over-arching studies are being conducted:

- 1. Effects of low-temperature aging and strain rate on deformation of Ti-1023
- 2. Effects of composition on deformation at high rate in Ti-Mo system

Secondary studies accompanying current work:

- 1. Effect of strain rate on deformation structure of Ti-15Mo
- 2. Investigating the effect of the low-temperature aging on  $\omega$  phase in Ti-1023
- 3. Investigating the nature of competition between  $\omega$  and  $\alpha$ <sup>"</sup> during quasi-static def.

## What is happening w/ ω-phase







## **Comparison of Post-Yield Microstructure of Ti-1023**



As-Quenched

Aged 900s at 423K



Deformed by a 0.5% plastic strain in tension at  $10^{-3}/s$ 

#### Comparison of Microstructure of Failed Tensile Specimens of Ti-1023



As-Quenched

Aged 7200s at 423K



All images are from specimens failed in tension at  $10^{-3}/s$ 

## Natural Aging in Ti-1023





# Comparison of Over-Aged (7200s, 423K) Microstructure of Ti-1023





Chen et al., Acta Materialia (2019).

DBs : Dislocation bands

XRD indicates that the material is still single phase  $\beta$ , i.e. no martensite is present

Artificial Aging of Ti-1023 for 7200s at 423K inhibits stressinduced martensite and causes dislocation bands to form



Lai et al. Acta Materialia 151 (2018): 67-77.

#### Strain Rate Effects on TRIP Ti-1023





## Strain Rate Effect in TWIP Ti-15Mo









SUMMER CANFSA MEETING - JUNE 2020

**Center Proprietary – Terms of CANFSA Membership Agreement Apply** 

SΔ



## **Post-Processing: Mechanical**



## **Post-Processing: Diffraction**







#### Exact synching remains to be done



Each frame corresponds to 20 µs interval

## **Interpreting Diffraction Data**





- Shift of peak intensity in 2θ indicates a phase change
- Increase in peak intensity indicates crystallite size refinement (twinning)

#### **Strain Rate Vs. Length Scale Overview: Current Progress**





## ω-phase in Aged Ti-10-2-3



