

Center for Advanced Non-Ferrous Structural Alloys An Industry/University Cooperative Research Center

Project #36A-L: Microstructural Evolution in Titanium Alloys Under Additive Manufacturing **Conditions**

Summer 2020 Videoconference June 30, 2020

Student: Alec Saville (Mines)

Faculty: Amy Clarke (Mines)

Industrial Mentors: Adam Pilchak (AFRL), Collin Donohoue/Jessica Buckner (SNL) Other Participants: Sven Vogel (LANL), Adam Creuziger & Jake Benzing (NIST)

Project 36A-L: Microstructural Evolution in Titanium Alloys Under Additive Manufacturing Conditions

Student: Alec Saville (Mines)Advisor(s): Amy Clarke (Mines)	Project Duration PhD: 2018 - 2022
 Problem: Control of material properties in metallic 	Recent Progress
additive manufacturing (AM) is difficult due to a lack of knowledge about material evolution during AM.	 Began reconstructions of prior β-Ti solidification microstructures in EBM Ti-6AI-4V specimens.
• <u>Objective</u> : Understand microstructural evolution of $\alpha + \beta$ and β -Ti alloys under AM conditions.	 Correlating α-Ti and β-Ti textures to build parameters, microstructures and maximum thermal gradients.
 <u>Benefit</u>: Greater understanding of material evolution in AM will inform predictive capabilities, enabling 	• Expanding experimental approach for β -Ti and WAAM Ti-6AI-4V studies based on EBM Ti-6AI-4V findings.
microstructural control during processing and improved performance of AM parts.	• Finishing editing process of paper on using MAUD software for extracting texture information from neutron diffraction data.

Metrics					
Description	% Complete	Status			
1. EBM Ti-6AI-4V texture	80%	•			
2. AM Beta-Ti solidification	10%	•			
3. AM Beta-Ti solid state	15%	•			
4. WAAM Ti-6AI-4V studies	10%	•			
5. Thesis Chapters	30%	•			

SUMMER 2020 VIDEOCONFERENCE

Overview

- EBM Ti-6Al-4V Work
 - Material production
 - Crystallographic texture
 - β -Ti reconstruction
 - Microstructural characterization
- Plans for β -Ti and WAAM Ti-6Al-4V Work
 - Experimental objectives
 - AM simulator Ti-10V-2Fe-3Al
 - WAAM Ti-6Al-4V
- Challenges and Opportunities

EBM Ti-6AI-4V Work

SUMMER 2020 VIDEOCONFERENCE

Multidisciplinary University Research Initiative (MURI), Office of Naval **Research**

SUMMER 2020 VIDEOCONFERENCE

center roprietary - Terms of CANFSA Membership Agreement Fasilities

Core Research

Spatial and Temporal Transients during AM -Temperature Gradients (Ti-6AI-4V) and Temperature Contours (Inconel 718)

Spatial-temporal thermomechanical boundary conditions may trigger complex interface stabilities and defect generations...

Courtesy of S.S. Babu, University of Tennessee

SUMMER 2020 VIDEOCONFERENCE

Center Proprietary – Terms of CANFSA Membership Agreement Apply

6

Sample Production

- Ti-6Al-4V rectangular prisms
 - 15 mm x 15 mm x 25 mm
- Built using an ARCAM Q10
 - Electron beam melting (EBM)
 - ARCAM provided Ti-6Al-4V powder
 - Chamber preheat of 470°C
- Three scan strategies
 - Random (spot)
 - Dehoff (spot)
 - Raster

Example EBM build process employing a Raster scan strategy. Credit: Arcam AB

Spot Scan Strategies

SUMMER 2020 VIDEOCONFERENCE

Raster Scan Strategy

Video Credit: Sabina Kumar, UTK

SUMMER 2020 VIDEOCONFERENCE

Layer 1

SUMMER 2020 VIDEOCONFERENCE

SUMMER 2020 VIDEOCONFERENCE

Experimental Specimens

Dehoff

Raster

Random

SUMMER 2020 VIDEOCONFERENCE

Analyzing Texture

- Neutron diffraction at Los Alamos National Laboratory
 - High-Pressure Preferred
 Orientation (HIPPO)
 - TOF neutron diffraction
- Measures crystallographic texture from diffraction events
- 10 mm diameter beam
- 15-20 minute analysis

HIPPO neutron diffraction beamline at LANL

Advantages of HIPPO

- Neutrons allow for analyzing larger volumes
 - -1000 mm^3
- Capable of bulk and local scans
 - Bulk texture (~ 600 mm³)
 - Local texture (~ 150 mm³)
- Necessary to correlate with other techniques for relating texture to microstructure

Large scale EBSD

Texture in AM Ti-6AI-4V

- Strong {001} fiber texture during solidification for β -Ti
- α -Ti normally exhibits relatively random texture
- Function of build parameters
 - Scan strategy
- Altering scan strategy alters local thermal history

Example BCC pole figures illustrating a {001} solidification texture.

Neutron Diffraction Data Results

- 1. α -Ti texture is fairly weak
- α-Ti texture changes with scan strategy
- α-Ti texture does not change considerably with build height
- Fiber textures observed in all specimens.

Analysis Details:

BD (out)

- Only analyzing *α*-Ti textures
 - β -Ti phase fraction refined to ~ 1-4%
 - Insufficient for confident texture analysis (>5%)
- Reference frame has been updated since last reporting

	Scan Strategy	1 mm Build Height	23 mm Build Height
	Dehoff α-Ti		
x	Random α-Ti		
	Raster α -Ti		(0002) Y X 2 1

Fiber Textures

- All specimens showed evidence of fiber textures
 - $\{11\overline{2}0\}$ and $\{01\overline{1}2\}$
 - W/R to build direction
- Source of primary texture components
 - {0112} not reported in AM literature
 - Orientations of higher intensity change with scan strategy

Fiber textures in the Random scan strategy specimen

In Orientation Distribution Function Plots

Evidence of {0112} Fiber

Random

What do these results mean?

SUMMER 2020 VIDEOCONFERENCE

What do these results mean?

Possible evidence of the Burger's orientation relationship (OR) between α -Ti and β -Ti.

SUMMER 2020 VIDEOCONFERENCE

Simulating $\beta \rightarrow \alpha$ Transformation Texture

- Simulation of the phase transformation can be achieved using MTEX
 - MATLAB plugin

Simulation Process:

- Assume the expected {001} solidification fiber texture
- Apply the Burger's OR
- Observe what orientations α -Ti appear after transformation
- Subtract theoretical orientations from experimental data
 - Evaluate if Burger's OR is present in experimental data

Simulation Results: Burger's OR CANFSA is Evident in Experimental Data

SUMMER 2020 VIDEOCONFERENCE

New Questions

- Is the assumption of a strong {001} solidification texture accurate for β -Ti accurate?
- What does the texture say about the microstructure?
 - After the build process?
 - Just after solidification?
- What aspects of the microstructure produce the $\{01\overline{1}2\}$ fiber texture?
 - Literature only shows $\{11\overline{2}0\}$ fiber textures
- Quantification of texture also requires further investigation.

Need correlative study with large scale EBSD.

Large Scale EBSD

- 48 hour EBSD scans
 - 4 x 4 mm in area
 - 1 um step size
 - Evaluating texture at center of specimen
 - National Institute of Standards and Technology
 - Boulder, CO

Objectives:

- 1. Relate aspects of microstructure to specific texture components
 - a. Specific grain morphologies
 - b. Evidence of microstructural evolution phenomena
- 2. Corroborate neutron diffraction analysis
 - a. Validate previous experimental findings and MAUD processing routines

Plane of analysis

EBSD Results

SUMMER 2020 VIDEOCONFERENCE

EBSD Results

All EBSD maps are colorized with respect to the build direction (up the screen).

4mm

15 mm

EBSD Results

All EBSD maps are colorized with respect to the build direction (up the screen).

Thank you to Adam Pilchak for their help in making the β -Ti reconstructions a reality.

SUMMER 2020 VIDEOCONFERENCE

Center Proprietary – Terms of CANFSA Membership Agreement Apply

NTER FOR ADVANCED

[0001]

[1100]

 $[\bar{1}2\bar{1}0]$

EBSD β -Ti Results: Random

SUMMER 2020 VIDEOCONFERENCE

Center Proprietary – Terms of CANFSA Membership Agreement Apply

Build Finish (BF)

SUMMER 2020 VIDEOCONFERENCE

EBSD β -Ti Results: Dehoff

Build Finish (BF)

SUMMER 2020 VIDEOCONFERENCE

Macrotexture Comparisons

 $(10\overline{1}0)$ $(11\bar{2}0)$ $(01\bar{1}2)$ (0002)3 Neutron 2 Diffraction α -Ti 0 $(10\overline{1}0)$ $(\mathbf{11}\mathbf{\overline{2}0})$ $(01\bar{1}2)$ (0002)3 EBSD α -Ti Х 2 1 0 (001)(110)(111)**Reconstructed** ΛY *β-*Ti → X BD (out) **Center Proprietary – Terms of CANFSA Membership Agreement Apply** SUMMER 2020 VIDEOCONFERENCE

EBSD *α***-Ti Results: Raster**

EBSD β -Ti Results: Raster

SUMMER 2020 VIDEOCONFERENCE

Macrotexture Comparisons

SUMMER 2020 VIDEOCONFERENCE

EBSD Results Summary

- All β -Ti reconstructions demonstrated a typical {001} solidification texture
 - Validates transformation simulation
- Tilt of (001) β -Ti parallel with the {0112} fiber texture
 - Thought to indicate the direction of largest thermal gradient
 - Different between scan strategies
 - Solidification anti-parallel to maximum thermal gradients
- Different solidification conditions evident from scan strategy
 - Raster = Large, columnar grains
 - Dehoff, Random = Finer columnar/globular grains
- Different β -Ti textures present between scan strategies
 - Raster = {001}<001> (Cube texture)
 - Dehoff and Random = {001} fiber texture
- Sharpness of {001} β -Ti orientation tied to increased α -Ti texture

β-Ti and WAAM Ti-6Al-4V Work

SUMMER 2020 VIDEOCONFERENCE

Ti-10V-2Fe-3Al β-**Ti**

- AM simulator experiments completed Q1-2020
 - Raster
 - Spot hits
 - Overlapping spot hits
- Objective: Evaluate if microstructural refinement can be achieved from different build parameters
 - Triggering martensitic transformation
 - Refinement with repeat spots/raster hits
- Simulate melt pools and rasters using Flow 3D

WAAM Ti-6AI-4V

- Parallel study to EBM Ti-6Al-4V work
 - Neutron diffraction along build height
 - Large scale EBSD for microstructural correlation and characterization
- Compare texture and microstructures to EBM Ti-6Al-4V results
 - Common texture through different build processes?
 - Changes in microstructural phenomenon?

Texture? Microstructure?

Progress

SUMMER 2020 VIDEOCONFERENCE

Challenges & Opportunities

- Tracking reference frames in neutron and EBSD texture work is time consuming
 - Experimental reference frames seldom reported effectively in literature
 - Recommended standard reference frame has evolved since last reporting
- β -Ti reconstructions are sensitive to fidelity of EBSD data
 - Too high fidelity = Artifacts in processing
- Computation expense of reconstructing large-scale EBSD data
 - 3-4 hours processing time with coarsening of experimental dataset
 - Variability of input files depending on version of EBSD data
- Major Success: Widespread collaboration in this work
 - Adam Pilchak (AFRL), Adam Creuziger (NIST), Jake Benzing (NIST), Jessica Buckner (SNL), Collin Donohoue (SNL), and Sven Vogel (LANL)

Thank you for listening! Any questions, comments, or concerns?

Alec Saville asaville@mymail.mines.edu

SUMMER 2020 VIDEOCONFERENCE