

Center for Advanced **Non-Ferrous Structural Alloys** An Industry/University Cooperative Research Center

Project 36E-L: In-Situ Characterization of **Microstructural Evolution During Simulated** Additive Manufacturing in Model Alloys

Summer 2020 Videoconference June 29 – July 1, July 8 – 10 2020

Student: Brian Rodgers (Mines) Faculty: Amy Clarke (Mines) Industrial Mentors: Edwin Schwalbach (AFRL), Neil Carlson (LANL) Other Participants: Jonah Klemm-Toole (Mines)

Project 36E-L: In-Situ Characterization of Microstructural Evolution During Simulated Additive Manufacturing in Model Alloys

•	Student: Brian Rodgers (Mines) Advisor(s): Amy Clarke (Mines)	Project Duration PhD: September 2019 to March 2023
•	 <u>Problem:</u> Aerospace components are difficult to produce conventionally, but the effects of additive manufacturing (AM) on microstructural evolution are not understood enough to replace conventional manufacturing. <u>Objective:</u> Develop an understanding of solidification behavior in model alloys under AM conditions by <i>in-situ</i> characterization. <u>Benefit:</u> Microstructural control for additive manufacturing of aerospace components. 	 <u>Recent Progress</u> Analysis of <i>in-situ</i> radiography from APS on Ni and AI base alloys Top-down imaging of as-solidified melt pools

Metrics				
Description		Status		
1. Literature review	15%	•		
2. Analysis of APS beam line data		•		
3. Analysis of Dynamic Transmission Electron Microscopy (DTEM) of rapid solidification		٠		
4. Simulation of experimental conditions		٠		
5. Complementary ex-situ microstructural characterization		•		

SUMMER 2020 VIDEOCONFERENCE

Industrial Relevance

Enhanced microstructure/properties:

- Control during AM

Applications:

- Turbine components
- Aerospace components

Benefits:

- Faster production time
- Greater geometric flexibility
- Reduced processing cost
- Enhanced performance
- Low volume / lean manufacturing and customization

Left photo courtesy of wikimedia, right photo courtesy of NASA 3

Model Alloys of Choice

- Two alloy systems:
 - Ni-Al-Mo
 - Al-Ag
- Ni-base system consists of two alloys with same equilibrium γ^\prime volume fraction supplied as single crystals
 - R2: Ni-6.6Al-1.9Mo (wt%)
 - R4: Ni-2.8Al-22.2Mo (wt%)
- Al-Ag binary system consists of two different fractions of silver
 - Al-10Ag (wt%)
 - Al-18Ag (wt%)

APS Experiments

- R2 and R4 alloys:
 - Rasters at constant heat input
 - Overlapping spot melts
- Al-Ag system:
 - Rasters and re-rasters for DTEM comparison

SUMMER 2020 VIDEOCONFERENCE

Recap of Previous Report

- Wrote a MATLAB program to perform Rosenthal-type simulations of conditions from APS
- Molten pool shape results differed between simulations and real melt pools
 - R2 and R4 matched for intermediate raster velocity, mismatched for low and high velocity
 - Al-Ag mismatched for most conditions
 - Non-steady-state behavior, especially keyholing, caused most extreme mismatches

Point Clicking for Interface Tracking

- Solid-liquid interface is tracked manually by clicking points along interface at different frames
 - Program developed by Gus Becker (thank you Gus!)
- Program outputs .csv file with x-y coordinates and frame numbers
- Conversion to physical distances and actual time stamps only requires a short unit conversion
- Finding the solidification velocity itself requires more data analysis

Analysis of Point Clicking for Rasters

- Find a polynomial fit to each set of points, and use it to compute the centroid
- Translate all points so that their centroids are about x=o
- Find a new fit including every data point
- Extract vectors for x and y points of polynomial fit to the left of the absolute minimum along depth
- Find the change in x and y between each set of points and adjust vector magnitude so change in x is equal to the raster speed
- If needed for single crystals, compute projection of result onto unit vector of given angle

Example Results

SUMMER 2020 VIDEOCONFERENCE

Top Down Imaging

- Beginning of correlation between microstructural features and *in-situ* radiography
- For example, finding spatter that landed on the sample surface during keyholing

Spatter Solidifies under Uncontrolled Conditions

- Dendrites indicate single crystal / highly textured material near centerline
- No such indication within spatter

Dendrites Switching Growth Direction during Rasters

- Sample has a {100} orientation with respect to the travel direction
- Remaining a 'single crystal' requires dendrite growth along <100>, but multiple growth directions in <100> can be active

Same Dendrites at Higher Magnification

High Speed Raster

 Still {100} orientation but dendrite orientation remains consistent

Dendrite Growth Direction Consistent for Stray Grains at High CANFSA Raster Speed

SUMMER 2020 VIDEOCONFERENCE

Slow Raster in AI – Ag

Secondary electron

Backscatter

250 µm

SUMMER 2020 VIDEOCONFERENCE Center Proprietary – Terms of CANFSA Membership Agreement Apply

Microstructure Differs between Steady State and End of Raster

- CANFSA CENTER FOR ADVANCED NON-FERROUS STRUCTURAL ALLOYS
- Appears more seaweed like in steady state regime and columnar towards the end
- Microstructure at beginning difficult to see due to oxide layer

Steady state

End

Fast Raster in Al-Ag

SUMMER 2020 VIDEOCONFERENCE

Challenges & Opportunities

- Analysis of spot melt velocities
 - Extension of normal lines
 - Intercepts along a line at a given angle
- Imaging AI Ag with oxide layer present
 - Cannot see microstructure underneath oxide layer in some areas
 - Might need a method to remove oxide without affecting metal
- FLOW-3D simulations
 - Learning software
- Qualifying exam

Thank you! Brian Rodgers brodgers@mines.edu