

Center for Advanced **Non-Ferrous Structural Alloys** An Industry/University Cooperative Research Center

Project 31-L: Accumulative Roll Bonding of Al 5083 Toward Low Temperature Superplasticity

Summer 2020 Videoconference June 29 – July 1, July 8 – 10 2020

Student: Brady McBride (Mines)

Faculty: Kester Clarke (Mines)

Industrial Mentors: John Carpenter (LANL), Ravi Verma (Boeing), Eric Payton (AFRL)

Project 31-L: Accumulative Roll Bonding of Al 5083 Toward Low Temperature Superplasticity

 Student: Brady McBride (Mines) Advisor(s): Kester Clarke (Mines) 	Project Duration PhD: September 2017 to May 2021
 <u>Problem:</u> Superplastic forming requires high temperatures and very low strain rates. <u>Objective:</u> Develop an in-depth understanding of how accumulative roll bonding affects temperature dependent strength and superplastic properties of AI 5083. <u>Benefit:</u> Low temperature superplasticity could result in reduced cost and cycle time due to reduced deformation temperatures and increased strain rates. 	 <u>Recent Progress</u> Completed PhD proposal Produced 100 tensile specimens with 5 cycles of ARB processing Conducted low temperature static annealing trials Finalized new grip design & furnace temperature profiling

Metrics			
Description	% Complete	Status	
1. Literature review	80%	•	
2. Production of ARBed samples	100%	•	
3. Static annealing trials	75%	•	
4. Round 1: HT Tensile Testing & Characterization	0%	•	
5. Round 2: HT Tensile Testing & Characterization	0%	•	
6. Round 3: HT Tensile Testing & Characterization	0%	•	

SUMMER 2020 VIDEOCONFERENCE

Outline

- Introduction to ARB and superplasticity
 - Conventional superplasticity
 - Low temperature superplasticity
- Recent work
 - Bulk sample production
 - Microstructural characterization
- Static annealing trials
 - Recovery, recrystallization, grain growth during static annealing
- Plans for immediate tensile testing
- Challenges and opportunities

Industrial Relevance

Enhanced properties:

- Hall-Petch strengthening
- low temperature superplasticity

Applications:

- superplastic forming
- high strength sheet components

Benefits:

- reduced cycle time
- reduced die wear
- reduced processing cost

Saito et al., Acta Materialia, 1999. Cleveland et al., Materials Science and Engineering A, 2003.

SUMMER 2020 VIDEOCONFERENCE

Conventional superplasticity in AI 5083

Al-4.4Mg-0.45Mn Solid solution strengthening (Mg) Dispersoid strengthening (Mn)

Superplastic response:

Temperature:	500 °C
Strain rates:	1E ⁻² to 1E ⁻⁴ s ⁻¹
Tensile elongation:	200 - 300 %

Grain boundary sliding: Small, equiaxed grains High angle grain boundaries Cold work and recrystallization ≈10 μm grains

Grain boundary sliding (GBS) inhibited by triple points and precipitates

Kaibyshev, Acta Materialia, 1998. SUMMER 2020 VIDEOCONFERENCE

Low temperature superplasticity in AI 5083

Hsiao & Huang, *Scripta Materialia*, 1999. Tsuji et al, *Materials Transactions*, 1999. SUMMER 2020 VIDEOCONFERENCE

Center Proprietary – Terms of CANFSA Membership Agreement Apply

Recent Work

SUMMER 2020 VIDEOCONFERENCE

Process Development for Bulk Sample Production

Production of 100 samples with 5 ARB processing cycles

B. McBride, K. Clarke, A. Clarke, Journal of Manufacturing Processes (2020)

SUMMER 2020 VIDEOCONFERENCE

Characterization of ARBed Microstructure

Midthickness grain morphology after 5 ARB cycles 30 - 90 RD um ND

Microstructural Stability after ARB Processing

SUMMER 2020 VIDEOCONFERENCE

Static Annealing Trials

RD

EBSD scans conducted near midthickness after annealing 5 ARBed microstructure

Static Annealing Trials

Can static annealing enhance grain boundary sliding?

Grain boundary sliding (GBS) inhibited by triple points and precipitates

Kaibyshev, Acta Materialia, 1998. SUMMER 2020 VIDEOCONFERENCE

Static Annealing Trials – Next Steps

Tentative research question:

- To what extent can Al 5083 microstructures produced by accumulative roll bonding (ARB) be engineered to be conducive for superplasticity?
 - 1. Quantify grain size, grain growth, texture after static annealing
 - 2. Investigate recrystallization with differential thermal analysis

Testing for Superplasticity

SUMMER 2020 VIDEOCONFERENCE

Testing for Superplasticity

Testing scenarios:1. Strain-to-failure2. Strain rate jump tests3. Interrupted strain

All using constant strain rate

Testing for Superplasticity

Strain to failure 321 % elongation 250 °C, 1 x 10⁻³ s⁻¹

Evaluating Superplasticity

Cleveland et al., Materials Science and Engineering A, 2003.

SUMMER 2020 VIDEOCONFERENCE

Evaluating Superplasticity

$$\dot{\epsilon} = A \frac{D_0 G b}{kT} \left[\frac{b}{d}\right]^p \left[\frac{\sigma}{G}\right]^{1/m} \exp\left(\frac{-Q}{kT}\right)$$

Quantify the propensity for grain boundary sliding:

1. Activation Energy of Deformation Relationship between σ and T⁻¹ Compare to $Q_{GB diff}$, $Q_{solute drag}$, $Q_{bulk diff}$, etc.

$$Q = \frac{k}{m} \frac{\delta \ln \sigma}{\delta 1/T} \Big|_{\epsilon, \dot{\epsilon}, d}$$

2. Interaction Volume Relationship between Q_a and m

$$v = \frac{\sqrt{3}kT}{\sigma m}$$

Evaluating Superplasticity – Next Steps

Tentative research question:

• What combination of uniaxial tensile testing parameters $(T, \dot{\varepsilon})$ produces optimal elongations in ARBed Al 5083?

- Strain-to-failure, strain rate jump tests for: Temperatures: 200 – 300 °C Strain rates: 1E⁻² to 1E⁻⁴ s⁻¹
- 2. Evaluate activation energy, activation volume
- 3. Microstructural analysis

Rationale for Proposed Work

SUMMER 2020 VIDEOCONFERENCE

Conventional processing	; baseline:
Temperature:	500 °C
Strain rates:	1E ⁻² to 1E ⁻⁴ s ⁻¹
Void percentage:	< 2 %
Tensile elongation:	200 - 300 %

SPF5083 lamp cans for airplanes

Anticipated Timeline

SUMMER 2020 VIDEOCONFERENCE

Challenges & Opportunities

- Next steps
 - Thermal analysis on ARBed microstructural stability
 - First round of tensile testing (total elongation, *m* values)
- Feasibility of using activation energy, activation volume to quantify grain boundary sliding (GBS)
 - Additional literature review needed for further understanding
- Access to high capacity rolling mill (e.g. LANL)
 - Small scale formability, anisotropy

Thank you! Brady McBride bmcbride@mines.edu

References

- Y. Saito, H. Utsunomiya, N. Tsuji, and T. Sakai, "Novel ultra-high straining process for bulk materials development of the accumulative roll-bonding (ARB) process," *Acta Materialia*, vol. 47, no. 2, pp. 579–583, 1999.
- [2] R. M. Cleveland, A. K. Ghosh, and J. R. Bradley, "Comparison of superplastic behavior in two 5083 aluminum alloys," *Materials Science and Engineering A*, vol. 351, no. 1-2, pp. 228–236, 2003.
- [3] N. Tsuji, K. Shiotsuki, and Y. Saito, "Superplasticity of ultra-fine grained Al-Mg Alloy by ARB," *Materials Transactions*, vol. 40, no. 8, pp. 765–771, 1999.
- [4] Hsiao, I. C., and J. C. Huang. "Development of low temperature superplasticity in commercial 5083 Al-Mg alloys." *Scripta Materialia,* vol. 40, no. 6, pp. 697-703, 1999.
- [5] Hsiao, I. C., and J. C. Huang. "Deformation mechanisms during low-and high-temperature superplasticity in 5083 Al-Mg alloy." *Metallurgical and Materials Transactions A*, vol. 33, no .5, pp. 1373-1384, 2002.
- [6] B. N. L. McBride, K. D. Clarke, and A. J. Clarke, "Mitigation of edge cracking during accumulative roll bonding (ARB) of aluminum strips," *Journal of Manufacturing Processes*, vol. 55, pp. 236–239, 2020
- [7] A. J. Barnes, "Superplastic Forming 40 Years and Still Growing," *Journal of Materials Engineering and Performance*, vol. 16, no. 4, pp. 440–454, 2007.
- [8] A. J. Barnes, H. Raman, A. Lower, and D. Edwards, "Recent Application of Superformed 5083 Aluminum Alloy in the Aerospace Industry," *Materials Science Forum*, vol. 735, pp. 361–371, 2013.

Void Formation

377 °C

290 °C

Can quantify void size, shape and distribution after tensile testing.

SUMMER 2020 VIDEOCONFERENCE

Center Proprietary – Terms of CANFSA Membership Agreement Apply

10

0

n

100

200

Distance through thickness (µm)

300

400

Additional Slides

SUMMER 2020 VIDEOCONFERENCE

Preliminary Tensile Tests

Conventional Processing ≈15 µm grain size

5 ARB Cycles \approx 250 nm x 1 µm x 1 um grain size

All tested at $\varepsilon_0 = 1 \times 10^{-3} \text{ s}^{-1}$

Proof-of-concept for low temperature "superplasticity"

RD

Accumulative Roll Bonding

How is ARB different from severe rolling?

- 1. High redundant shear
- 2. Sheared region distribution through thickness

Kamikawa et al., *Acta Materialia*, 2007. SUMMER 2020 VIDEOCONFERENCE

Static Annealing Trials

Condition for GBS: Small, equiaxed grains.

5 ARB Cycles

Can <u>static annealing</u> between 200 - 300 °C transform elongated grains into equiaxed grains?

Gholinia et al, *Acta Materialia*, 2002. SUMMER 2020 VIDEOCONFERENCE

Tensile Geometry

Characterization of ARBed Microstructure

5 ARB cycles produce submicron highly elongated grains

SUMMER 2020 VIDEOCONFERENCE