

Center for Advanced **Non-Ferrous Structural Alloys** An Industry/University Cooperative Research Center

Project 33a-L: In-Situ Studies of Strain Rate Effects on Phase Transformations and Microstructural Evolution in β Titanium

Spring Meeting April 7-9, 2020

- Student: Benjamin Ellyson(Mines)
- Faculty: Prof. Amy Clarke (Mines)
- Industrial Mentors: Austin Mann (Boeing), Clarissa Yablinsky (LANL), John Foltz (ATI)
- Other Participants: Jonah Klemm-Toole (Mines)

Project 33a-L: In-Situ Studies of Strain Rate Effects on Phase Transformations and Microstructural Evolution in β-Titanium

Student: Benjamin Ellyson (Mines)Advisor(s): Amy Clarke (Mines)	Project Duration PhD: September 2017 to May 2021
•Problem: Uniform elongation and work bardening of	Recent Progress
 <u>Problem</u>. Onnonneoingation and work hardening of titanium alloys restricts applications <u>Objective</u>: Fundamentally understand microstructural evolution in metastable β titanium alloys to develop an alloy design methodologies and tailor microstructures and properties <u>Benefit</u>: Novel titanium alloys for blast and crash resistant applications 	 Advanced Photon Source (APS) February 2020 beamtime completed Transmission electron microscopy (TEM) of aged Ti- 10V-2Fe-3Al (wt.%) (Ti-10-2-3) tensile specimens is underway TEM of intermediate strain rate tensile specimens of Ti-15Mo (wt.%) and Ti-10-2-3 is beginning Dilatometry of Ti-15Mo and Ti-10-2-3 is near completion

Metrics				
Description	% Complete	Status		
1. Literature review	80%	•		
2. Quasi-static mechanical characterization of Ti-10-2-3 and Ti-15Mo	95%	•		
3. Dynamic testing of Ti-10-2-3 and Ti-15Mo		•		
4. Microstructural characterization of pre- and post-deformation samples	60%	•		
5. In situ characterization of microstructural evolution during deformation	40%	•		

Center Proprietary – Terms of CANFSA Membership Agreement Apply SPRING CANFSA MEETING – APRIL 2020

Industrial Relevance: Development of

Blast Resistant Materials for the Navy (

Propulsion

- **Materials Program**
 - Aircraft and marine engines

Cellular Materials Program

- Multifunctional structures
- **Blast resistance**
- Thermal management

https://www.onr.navy.mil/Science-Technology/Departments/Code-33

Ti-25Nb-3Zr-3Mo-2Sn (wt.%) Alloy Microstructure After Deformation

Compression at 10⁻³ to 0.18 true strain

H. Zhan, et al. 107 Scripta Materialia (2015): 34-37

SPRING CANFSA MEETING - APRIL 2020

Multi-scale Studies of TRIP/TWIP During High Rate Deformation

TRIP: Transformation Induced Plasticity, TWIP: TWinning Induced Plasticity, DTEM: Dynamic Transmission Electron Microscopy, TEM: Transmission Electron Microscopy, XRD: X-Ray Diffraction, pRad: Proton Radiography, ASTAR: Automatic Crystal Orientation and Phase Mapping, MTS: Materials Test Systems

SPRING CANFSA MEETING – APRIL 2020 Cente

The Effect of Strain Rate on Deformation Mechanisms During Compression of a Ti-10V-3Fe-3AI (wt.%) Alloy

- Deformation mechanisms present at all strain rates :
 - Stress-induced α" martensite
 - {332}<113> β twinning
 - Stress-induced ω
 phase
 - Slip

Strain rate (10⁻³ to 10² s-1)

Ahmed, M., et al. 104 Acta Materialia (2016): 190-200

As-Quenched Quasi-static Tension of Ti-10-2-3

SPRING CANFSA MEETING - APRIL 2020

Artificial Aging of Ti-10-2-3 at 423K and Quasi-static Tensile Testing

X-Ray Diffraction (XRD) of Aged CANFSA and Deformed Specimens

SPRING CANFSA MEETING – APRIL 2020

ω-phase in Aged Ti-10-2-3

{332} TWIP in Max TRIP Stress (MTS) Condition of Ti-10-2-3

SADP taken from all twins along the twinning direction

Aged 900 s at 423 K specimens fractured in tension at 10⁻³/s

SPRING CANFSA MEETING – APRIL 2020

Deformed Microstructure of TRIP Inhibited (TI) Condition

Similar to results reported in :

Chen, Wei, et al. Acta Materialia, 2019, 170, 187-204.

Lai, M. J., Tong Li, and Dierk Raabe. Acta Materialia, 2018, 151, 67-77.

Mantri, S. A., et al. Scripta Materialia, 2017, 130, 69-73.

Wang, Weilin, et al. Materials & Design, 2020, 186, 108282.

SPRING CANFSA MEETING – APRIL 2020

ω-phase Strengthening of Stressinduced Martensite in Ti-10-2-3: Overview and Limits

SPRING CANFSA MEETING - APRIL 2020

Dilatometry and ω Kinetics

Hickman, B. S. Journal of Materials Science 4.6 (1969): 554-563.

Sector 32-ID Kolsky Bar Testing at the Advanced Photon Source (APS)

Alloys (wt.%)	Heat Treatment Name and Condition			
Ti-10V-2Fe-3Al	AQ 1123K-0.5h→WQ	MTS AQ+423K-900s	TI AQ+423K-7200s	
Ti-15Mo	AQ 800-1h→WQ			
Ti-12Mo	AQ 820-1h→WQ			
F Diffraction	Pneumatic A Actuator in	A total of 102 β–Ti sam n February 2020	າples were tested	
Diffracted beam	Load transmission bar <u>Strain signal</u>			
Transmitted beam Loa	Sample d Cell			
	Oscilloscope			

Current & Future Collaborations

Experiments

Hypothesis/Intent

In-situ heating & quasi-static tensile testing in the TEM @ LLNL

Bulk/macroscopic Kolsky bar testing @ LANL

Quasi-static, in-situ tensile testing @ the Cornell High Energy Synchrotron Source (CHESS) & Sector 1-ID at the APS

In-situ Transient Grating Spectroscopy (TGS) @ MIT

Fine scale ω -phase & α'' interactions & ω -phase evolution during aging

Cleaner mechanical testing data for 10³ s⁻¹ comparison with small-scale APS experiments

Wide and Small Angle X-ray Scattering (WAXS/SAXS) of ω -phase and α'' interactions and ω -phase coarsening during aging

In-situ measurements of elastic anisotropy during aging

SPRING CANESA MEETING – APRIL 2020 Center Proprietary – Terms of CAN

TGS measures surface acoustic waves (SAW), which are dependent on the speed of sound in the material, i.e. stiffness

Hofmann, F., Short, M., & Dennett, C. (2019). MRS Bulletin, 44(5), 392-402. doi:10.1557/mrs.2019.104

Challenges & Opportunities

Challenges

- High Resolution Transmission Electron Microscopy (HRTEM) to investigate the structure of metastable phases
- Mechanical testing data from the APS is noisy (load cell use)

Opportunities

- ω -phase strengthening has similar effects to increasing the β phase stability (TRIP \rightarrow TRIP/TWIP \rightarrow TWIP)
- A publication on the precipitation kinetics of ω phase is being prepared (insights for suitbale heat treatments)
- A publication on the effect of low temperature aging on the strength/ductility of Ti-10-2-3 has been prepared and is ready for submisson

Thank you!

Benjamin Ellyson bellyson@mines.edu

SPRING CANFSA MEETING – APRIL 2020 Center Proprietary – Terms of CANFSA Membership Agreement Apply