

Center for Advanced **Non-Ferrous Structural Alloys** An Industry/University Cooperative Research Center

Project 36E-L: In-Situ Characterization of Microstructural Evolution During Simulated Additive Manufacturing in Model Alloys

Spring Meeting April 7th – 9th 2020

- Student: Brian Rodgers (Mines)
- Faculty: Dr. Amy Clarke (Mines)
- Industrial Mentors: TBD
- Other Participants: Dr. Jonah Klemm-Toole

Project 36E-L: In-Situ Characterization of Microstructural Evolution During Simulated Additive Manufacturing in Model Alloys

Student: Brian Rodgers (Mines)Advisor: Amy Clarke (Mines)	Project Duration PhD: September 2019 to March 2023
 <u>Problem:</u> Aerospace components are difficult to produce conventionally, but the effects of additive manufacturing (AM) on microstructural evolution are not understood enough to replace conventional manufacturing. <u>Objective:</u> Develop an understanding of solidification behavior in model alloys under AM conditions by <i>in-situ</i> characterization. <u>Benefit:</u> Microstructural control for additive manufacturing of aerospace components. 	 <u>Recent Progress</u> <i>In-situ</i> experiments at the Advanced Photon Source (APS). Analysis of APS <i>in-situ</i> radiography. Rosenthal-type simulations of experiments at the APS.

Metrics			
Description		Status	
1. Literature review	10%	•	
2. Analysis of APS beam line data	10%	•	
3. Analysis of Dynamic Transmission Electron Microscopy (DTEM) of rapid solidification	0%	•	
4. Simulation of experimental conditions		•	
5. Complementary ex-situ microstructural characterization	0%	•	

SPRING CANFSA MEETING - APRIL 2020

Center Proprietary – Terms of CANFSA Membership Agreement Apply

Industrial Relevance

Enhanced microstructure/properties:

- Control during AM

Applications:

- Turbine components
- Aerospace components

Benefits:

- Faster production time
- Greater geometric flexibility
- Reduced processing cost
- Enhanced performance
- Low volume / lean manufacturing and customization

Left photo courtesy of wikimedia, right photo courtesy of NASA 3

SPRING CANFSA MEETING - APRIL 2020

Center Proprietary – Terms of CANFSA Membership Agreement Apply

Model Alloys of Choice

- Two alloy systems:
 - Ni-Al-Mo
 - Al-Ag
- Ni-base system consists of two alloys with same equilibrium γ^\prime volume fraction supplied as single crystals
 - R2: Ni-6.6Al-1.9Mo (wt%)
 - R4: Ni-2.8Al-22.2Mo (wt%)
- Al-Ag binary system consists of two different fractions of silver
 - Al-10Ag (wt%)
 - Al-18Ag (wt%)

APS Experiments

- R2 and R4 alloys:
 - Rasters at constant heat input
 - Overlapping spot melts
- Al-Ag system:

SPRING CANFSA MEETING – APRIL 2020

Center Proprietary – Terms of CANFSA Membership Agreement Apply

Example Radiography

R4 <100> 82.2 W

R4 <100> 253.9 W

MATLAB Simulations

- Program using Rosenthal-type equations to simulate temperature, thermal gradient, cooling rate, and solidification rate
- Filtering logic added to exclude values outside regions of interest and to remove singularity from consideration
- Assumptions include:
 - Point heat source
 - No convection
 - Semi-infinite boundary conditions
 - Steady-state
 - Same thermophysical properties between solid and liquid

Rosenthal Solutions

Inputs:
• Absorptivity
• Power
• Travel speed
• Thermal
diffusivity
• Thermal

$$\frac{\partial T}{\partial x} = -\frac{\lambda P v}{4\pi k \alpha r} \left[1 + \frac{x}{r} + \frac{2\alpha x}{v r^2} \right] \exp \left(-\frac{v}{2\alpha} (x+r) \right)$$

$$\frac{\partial T}{\partial y} = -\frac{\lambda P v y}{4\pi k \alpha r^2} \left[1 + \frac{2\alpha}{v r} \right] \exp \left(-\frac{v}{2\alpha} (x+r) \right)$$

$$\frac{\partial T}{\partial t} = \frac{\lambda P v^2}{4\pi k \alpha r} \left[1 + \frac{x}{r} + \frac{2\alpha x}{v r^2} \right] \exp \left(-\frac{v}{2\alpha} (x+r) \right)$$

$$\frac{\partial T}{\partial t} = \frac{\lambda P v^2}{4\pi k \alpha r} \left[1 + \frac{x}{r} + \frac{2\alpha x}{v r^2} \right] \exp \left(-\frac{v}{2\alpha} (x+r) \right)$$

$$R_{\theta} = \frac{\frac{\partial T}{\partial t}}{\sqrt{\left(\frac{\partial T}{\partial x} \cos(\theta) \right)^2 + \left(\frac{\partial T}{\partial y} \sin(\theta) \right)^2}}$$
P. Promoppatum et.

SPRING CANFSA MEETING - APRIL 2020

Center Proprietary – Terms of CANFSA Membership Agreement Apply

P. Promoppatum et. al., Engineering 9

Real-Simulated Comparison

- Absorptivity adjusted so real and simulated pool depth matches
- Real and simulated pool lengths tend to differ, most egregious cases due to keyholing or nonsteady-state behavior
- Ni rasters remain in conduction mode, but some do not appear to be fully steady-state
- Al-Ag melt pools seemingly steady-state conduction mode towards start then abruptly transition to keyhole mode

Closely Matched R4 Raster

- 139.4 W, 0.5 m/s
- <100> orientation

Underestimated R2 Raster

- 47.8 W, 0.1 m/s
- <111> orientation

Overestimated R4 Raster

- 253.9 W, 1.6 m/s
- <100> orientation

Non-Steady-State Sample

- R2 <100>, 517 W, 1.6 m/s
- Highest power used, later samples all use lower power

Nickel Raster Conclusions

- Simulation underestimates slow rasters and overestimates fast rasters
- Keyholing invalidates model
 - -Pool shape mismatches
 - -Increase in absorptivity not accounted for

AI-Ag Only Underestimated

- Real-simulated comparison done only for steadystate region before onset of keyholing
- Consistent underestimation likely caused by thermal soaking
- Thermal soaking also explains the transition from conduction to keyhole
- Pools also steadily grow during raster

• 282.5 W, 0.1 m/s

Re-Raster with Interesting Keyhole Behavior

Al-10Ag, 282.5 W, 0.1 m/s

Challenges & Opportunities

- Analysis of *in-situ* APS data
 - Tracking solid-liquid interface velocity manually is slow
 - Ongoing discussion about potential for automation
- More sophisticated simulations
 - Application of FLOW-3D to account for additional effects
- Microstructural analysis
 - Sample preparation

Thank you! Brian Rodgers brodgers@mines.edu

References

[1] P. Promoppatum, S.-C. Yao, P.C. Pistorius, A.D. Rollett, A Comprehensive Comparison of the Analytical and Numerical Prediction of the Thermal History and Solidification Microstructure of Inconel 718 Products Made by Laser Powder-Bed Fusion, Engineering. 3 (2017) 685–694. doi:10.1016/j.eng.2017.05.023.