

Center for Advanced Non-Ferrous Structural Alloys An Industry/University Cooperative Research Center

Project 31-L: Accumulative Roll Bonding of AI (and Ti) Sheets Toward Low Temperature Superplasticity

Spring Meeting April 7th – 9th 2020

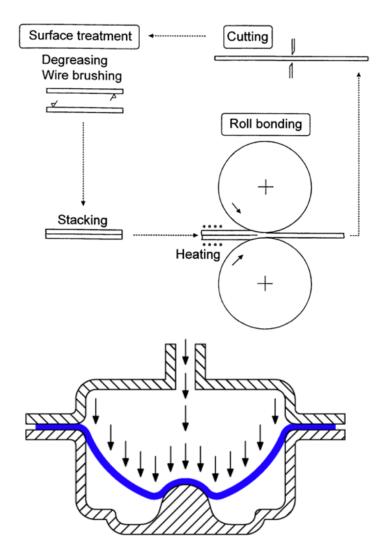
- Student: Brady McBride (Mines)
- Faculty: Dr. Kester Clarke (Mines)
- Industrial Mentors: John Carpenter (LANL), Eric Payton (AFRL), Ravi Verma (Boeing)

Project 31-L: Accumulative Roll Bonding of Al and Ti Sheets Toward Low Temperature Superplasticity

 Student: Brady McBride (Mines) Advisor(s): Kester Clarke (Mines) 	Project Duration PhD: September 2017 to May 2021
 <u>Problem</u>: Superplastic forming requires high temperatures and very low strain rates. <u>Objective</u>: Develop an in-depth understanding of how accumulative roll bonding affects temperature dependent strength and superplastic properties of Al 5083. <u>Benefit</u>: Low temperature superplasticity could result in reduced cost and cycle time due to reduced deformation temperatures and increased strain rates. 	 <u>Recent Progress</u> Article on lateral constraint in <i>Journal of</i> <i>Manufacturing Processes</i> Microstructural characterization of AI 5083 after 5 ARB cycles Final grip design & furnace temperature profiles completed for high temperature testing

Metrics			
Description	% Complete	Status	
1. Literature review	80%	•	
2. Characterize 5-cycle microstructure	100%	•	
3. Static annealing trials	0%	•	
4. Round 1: HT Tensile Testing & Characterization	0%	•	
5. Round 2: HT Tensile Testing & Characterization	0%	•	

SPRING CANFSA MEETING - APRIL 2020



- Introduction to Accumulative Roll Bonding (ARB)
- Characterization of ARBed Microstructure
- Preliminary Tensile Results
 - Tensile elongation
 - Grain-size stability
 - Cavitation
- Project Objectives

Industrial Relevance

Enhanced properties:

- Hall-Petch strengthening
- low temperature superplasticity

Applications:

- superplastic forming
- high strength sheet components

Benefits:

- reduced cycle time
- reduced die wear
- reduced processing cost

Saito et al., *Acta Materialia*, 1999. Cleveland et al., *Materials Science and Engineering A*, 2003.

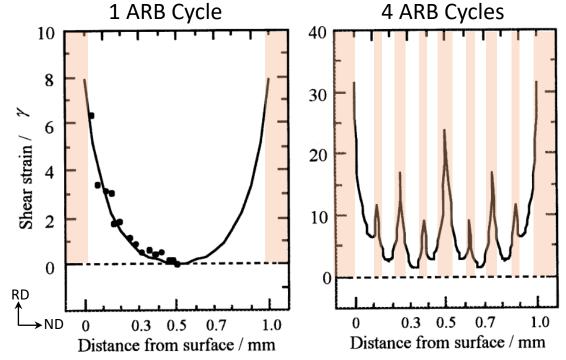
SPRING CANFSA MEETING - APRIL 2020

Developed Processing Procedure

Al 5083 - 5 ARB Cycles

50 mm sample without constraint 31.7 mm sample with 6.3 mm constraint RD \rightarrow 25 mm

<u>Repeatable</u> mitigation of edge cracking for up to 5 cycles of ARB using constraining frames



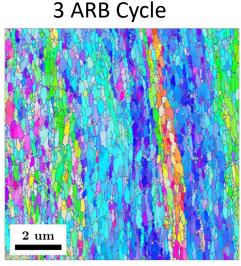
CANFSA CENTER FOR ADVANCED NON-FERROUS STRUCTURAL ALLOYS

Grain refinement encouraged by:

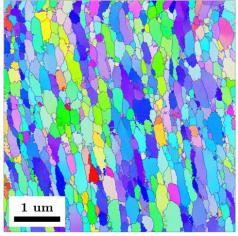
- 1. High redundant shear
- Sheared region introduced through thickness

Microstructural Considerations

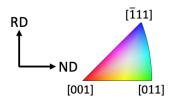
- 1. What is the extent of grain refinement?
- 2. Is grain refinement homogenous through thickness?


Kamikawa et al., *Acta Materialia*, 2007. SPRING CANFSA MEETING – APRIL 2020

1. What is the extent of grain refinement?

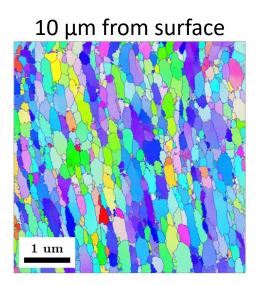


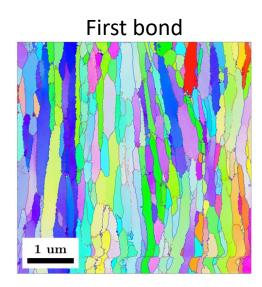
Heavily substructured grains

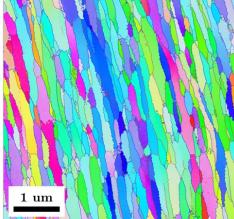


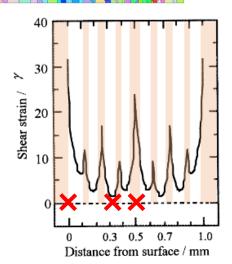
Near-equiaxed (sub)grains in bands

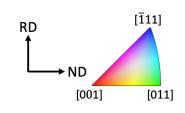
5 ARB Cycle

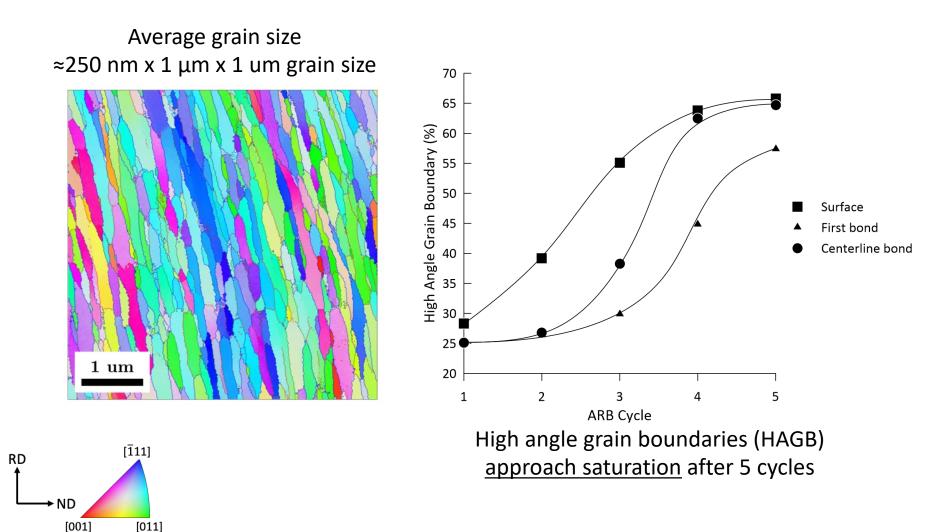



Near-equiaxed grains



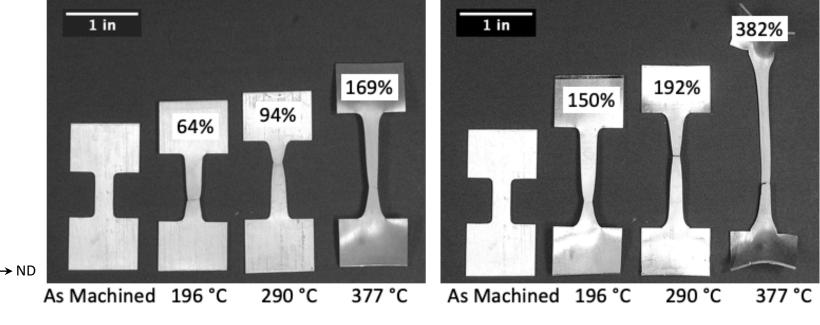

2. Is grain refinement homogenous through thickness?

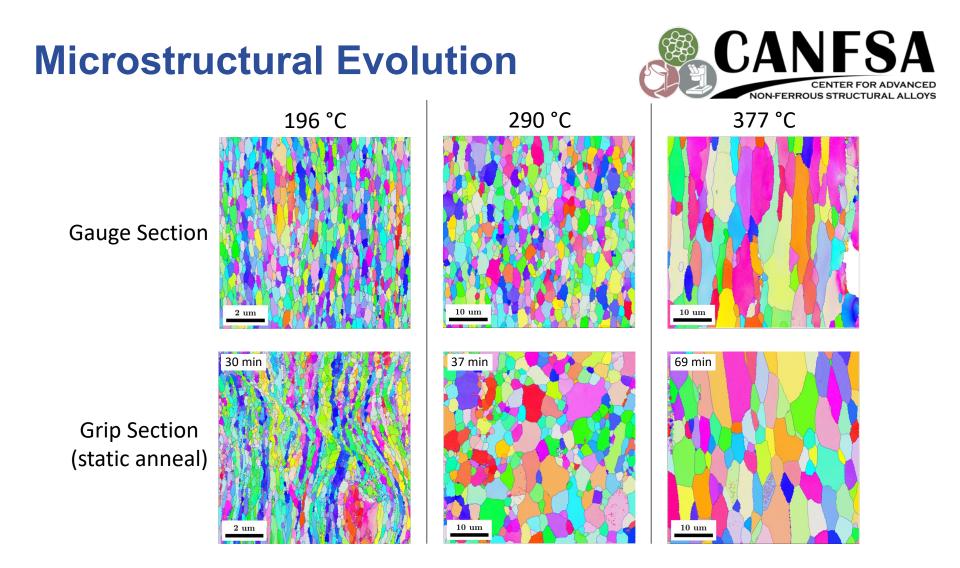


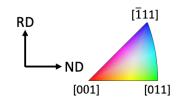


SPRING CANFSA MEETING - APRIL 2020

SPRING CANFSA MEETING – APRIL 2020 Center Proprietary – Terms of CANFSA Membership Agreement Apply

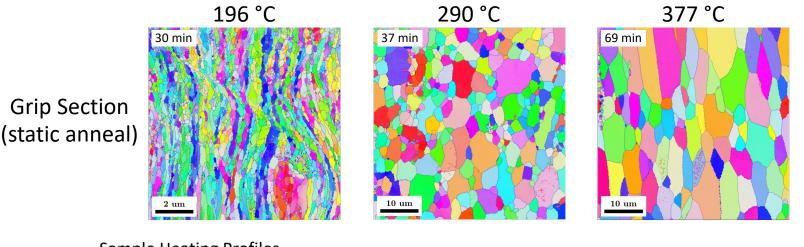

Preliminary Tensile Results

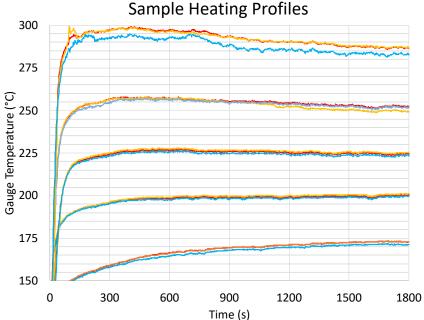

Conventional Processing ≈15 µm grain size


RD

5 ARB Cycles \approx 250 nm x 1 µm x 1 um grain size

All tested at $\varepsilon_0 = 1 \times 10^{-3} \text{ s}^{-1}$



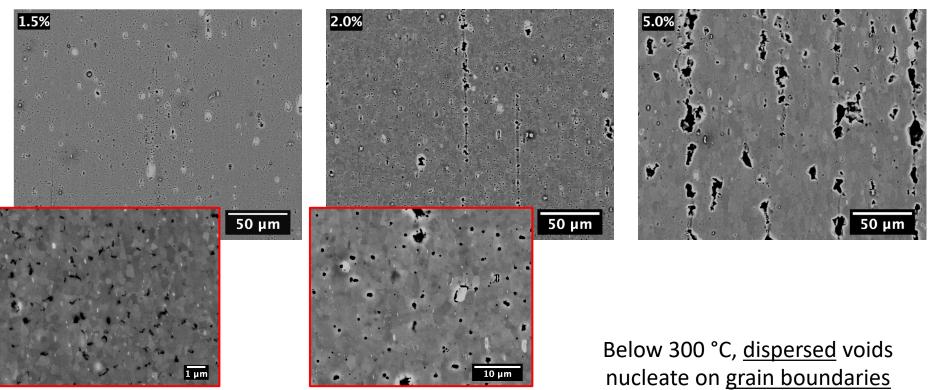

Does static annealing lead to a microstructure more conducive for superplasticity?

SPRING CANFSA MEETING – APRIL 2020 Center

Static Annealing Trials

- Static Annealing Parameters

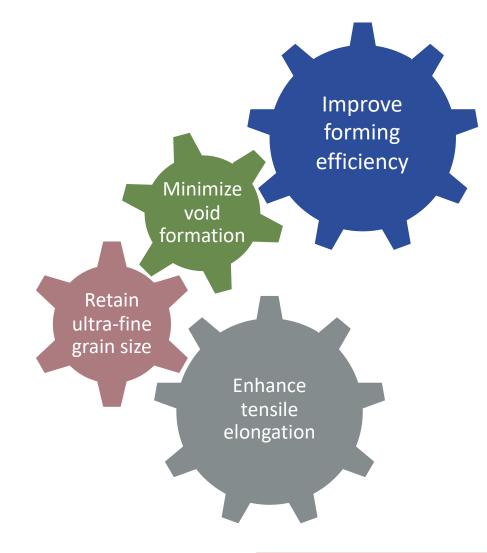
 200, 250, 300 °C
 15, 30 minutes
- 2. Potentially use DSC to complement results


SPRING CANFSA MEETING – APRIL 2020

Cavitation during Deformation

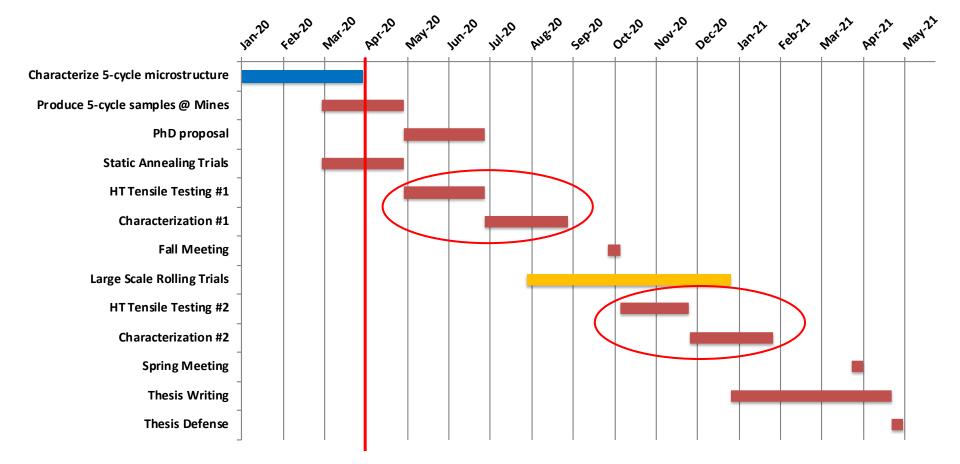
377 °C

196 °C



290 °C

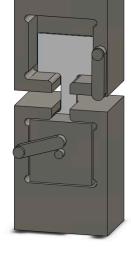
Optimizing Superplasticity


Variables to investigate:

- temperature
- strain rate
- static annealing processes

Conventional processing baseline: Temperature: 500 °C Strain rates: 1E⁻² to 1E⁻⁴ s⁻¹ Void percentage: < 2 % Tensile elongation: 200 - 300 %

Access to high-capacity rolling mill (>50 tons)


Increased HT tensile testing capabilities Mines

Inconel fixtures for other HT testing (ASTM E2448)

- Bulk production of samples for testing
- Larger samples \rightarrow formability, anisotropy testing

Thank you! **Brady McBride** bmcbride@mines.edu

Challenges & Opportunities

References

- [1] Y. Saito, H. Utsunomiya, N. Tsuji, and T. Sakai, "Novel ultra-high straining process for bulk materials—development of the accumulative roll-bonding (ARB) process," Acta Materialia, vol. 47, no. 2, pp. 579–583, 1999.
- [2] R. M. Cleveland, A. K. Ghosh, and J. R. Bradley, "Comparison of superplastic behavior in two 5083 aluminum alloys," *Materials Science and Engineering A*, vol. 351, no. 1-2, pp. 228–236, 2003.
- [3] B. McBride, K. Clarke, A. Clarke, "Mitigation of edge cracking during accumulative roll bonding of aluminum strips", *Journal of Manufacturing Processes* (Accepted) (2020)
- [4] N. Kamikawa, T. Sakai, N. Tsuji, "Effect of redundant shear strain on microstructure and texture evolution during accumulative roll-bonding in ultralow carbon IF steel", Acta Materialia vol. 5, pp. 5873-5888, 2007.
- [5] I. Hsiao, J. Huang, "Deformation mechanisms during low- and high-temperature superplasticity in 5083 Al-Mg alloy", *Metallurgical and Materials Transactions A*, vol. 33, pp. 5873-5888, 2007.
- [6] J. Pilling, N Ridley, "Superplasticity in Crystalline Solids", CRC Press London, 1989.

Tensile Testing Procedures

$$\dot{\varepsilon} = A \frac{D_0 G b}{RT} \left[\frac{b}{d}\right]^p \left[\frac{\sigma}{G}\right]^{1/m} e^{\left(\frac{-Q}{RT}\right)}$$

p, grain size exponent

- examining effect of d on σ , $\dot{\epsilon}$
- 0 for power law/solute drag creep
- 2 for lattice diffusion
- 3 for grain boundary diffusion
- m, strain rate sensitivity
 - examining effect of $\dot{\epsilon}$ on σ
 - 0.2 0.4 for dislocation creep
 - > 0.5 for grain boundary sliding

- Q, activation energy for diffusion process
 - examining effect of σ on T
 - lattice diffusion
 - solute / pipe diffusion
 - grain boundary diffusion

Proposed Testing Procedure

Strain-rate-jump test:

- constant Τ, Δέ

Elongation-to-failure* test: - constant T, ċ

*and interrupted

Hsiao & Huang, *Metallurgical and Materials Transactions A*, 2002. Pilling & Ridley, *Superplasticity in Crystalline Solids*, 1989.

SPRING CANFSA MEETING - APRIL 2020