

### Center for Advanced Non-Ferrous Structural Alloys

An Industry/University Cooperative Research Center

### Project 34: In-situ Observation of Phase and Texture Evolution Preceding Abnormal Grain Growth in Ni-based Aerospace Alloys

### Spring Meeting April 7<sup>th</sup> – 9<sup>th</sup> 2020

Student: Byron McArthur (Mines) Faculty: Amy Clarke, Kester Clarke, Michael Kaufman (Mines) Industrial Mentor: Eric Payton (AFRL), Kevin Severs (ATI)



### Project 34: In-situ Observation of Phase and Texture Evolution Preceding Abnormal Grain Growth in Ni-based Superalloys



| <ul> <li>Student: Byron McArthur (Mines)</li> <li>Advisors: Amy Clarke, Kester Clarke, Michael</li></ul>                                                                                                                                                                                                                                                                                                                         | Project Duration                                                                                                                                                                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Kaufman (Mines)                                                                                                                                                                                                                                                                                                                                                                                                                  | PhD: Nov 2017. to Dec. 2020                                                                                                                                                                             |
| <ul> <li>Problem: Abnormal grain growth (AGG) in Ni-based superalloys (RR-1000) significantly reduces mechanical properties and occurs as a result of forging parameters.</li> <li><u>Objective:</u> Determine the mechanism of abnormal grain growth in Ni-based superalloys using ex-situ and in-situ characterization techniques.</li> <li><u>Benefit:</u> Improved mechanical properties for turbine disk alloys.</li> </ul> | <ul> <li><u>Recent Progress</u></li> <li>Developing mechanistic theory for AGG</li> <li>Strain rate sensitivity testing of RR1000</li> <li>Performing mesoscopic model testing of AGG theory</li> </ul> |

| Metrics                                                               |            |        |  |
|-----------------------------------------------------------------------|------------|--------|--|
| Description                                                           | % Complete | Status |  |
| 1. Literature review                                                  | 90%        | •      |  |
| 2. Explore abnormal grain growth forging parameters for RR1000        | 90%        | •      |  |
| 3. Ex-situ and interrupted material testing and characterization      | 50%        | •      |  |
| 4. Develop and test theory to explain abnormal grain growth phenomena | 75%        | •      |  |
| 5. Perform model testing to observe mechanisms                        | 50%        | •      |  |

SPRING CANFSA MEETING – April 2020

**Center Proprietary – Terms of CANFSA Membership Agreement Apply** 

#### SPRING CANFSA MEETING – April 2020

Center Proprietary – Terms of CANFSA Membership Agreement Apply

## **Material: RR-1000**, γ-γ'

- Processing:
  - Powder metallurgy
  - Hot isostatic pressure compaction
  - Extruded at 5:1 ratio
  - Isothermal forging: 1035-1110°C
    - Performed in Gleeble®
  - Super solvus heat treatment (SSHT)
    - 1150-1170°C
    - Performed in dilatometer
- Critical AGG parameters:
  - Strain
  - Strain rate
  - Heating rate to super solvus hold
  - Forging temperature



M.C. Hardy, B. Zirbel, G. Shen, R. Shankar. Developing damage tolerance and creep resistance in a high strength nickel alloy for disc applications, Superalloys 2004 83-90 (2004).



## **Isothermal Forging**



- Sub-  $\gamma'$  solvus temperature
- Low strain rate
- Maintain superplastic deformation for decreased forging loads
- Primary γ' pins γ grain boundaries
  - Secondary  $\gamma'$  less effective or dissolved
- Low stored energy accumulation
  - Grain boundary sliding (Coble creep)
  - Dynamic recovery
  - Dynamic recrystallization



#### Forging ~1 Meter Diameter

Mitchell, R. J., Lemsky, J. A., Ramanathan, R., Li, H. Y., Perkins, K. M., & Connor, L. D. *Superalloys 2008, pp.* 347–356.

### **As-received Material**

### <u>Low $\gamma_1$ ' Fraction</u>





### <u>High $\gamma_1$ 'Fraction</u>



#### Thanks to Yaofeng Guo for TEM imaging

SPRING CANFSA MEETING – April 2020

**Center Proprietary – Terms of CANFSA Membership Agreement Apply** 

## **As-received Material**



### Low $\gamma_1$ ' Fraction



- Lower  $\gamma_1$  demonstrated AGG
- Higher  $\gamma_1$ ' showed no AGG
- γ' size influences deformation mechanism, stored energy, and recrystallization
- Higher γ<sub>1</sub>' may be used later for further development or support of AGG theory

#### Thanks to Yaofeng Guo for TEM imaging



## **Experimental Procedure**

Wire-EDM





Machine to length with parallel faces



## Summary of Prior Work & Results CANES

- Replicate industrial processing that leads to AGG in lab-scale testing
  - High temperature, low strain & strain rate, low super-solvus heating rate
- Determine influential processing parameters and their roles
  - Varying parameters shift AGG to regions of more/less stored energy
- Consistently produce AGG via Gleeble TMP and heat treating
- Exploring experimental techniques to detail phenomena





## **Strain Rate Sensitivity**





## Theory of Abnormal Grain Growth





# $\gamma$ '- $\gamma$ Diffusion



- Ni3Al-Ni ( $\gamma'$   $\gamma$ ) diffusion couple annealed
- Al in  $\gamma'$  diffused to  $\gamma$ , forms  $\gamma$
- New  $\gamma$  of parent  $\gamma'$  orientation
- Supports theory of stable γ- γ boundary formed in location of parent γ'- γ boundary







#### Kirkendall voids

M. Watanabe, Z. Horita, D.J. Smith, M.R. McCartney, T. Sano, M. Nemoto, Electron microscopy study of Ni/Ni3Al diffusion-couple interface-I. Microstructural observation and microchemical analysis, Acta Metall. Mater. 42 (1994) 3381–3387

SPRING CANFSA MEETING – April 2020 | Center Proprietary – Terms of CANFSA Membership Agreement Apply

## **Mesoscopic AGG Study**



- Diffusion couple to create  $\gamma$ - $\gamma'$  interface
- $\gamma'$  created through Ni<sub>3</sub>Al button melted specimen
  - Stoichiometric composition
  - Homogenized at 1000°C for 24 hours
- Pure nickel for  $\gamma$
- Aluminum diffusion driving  $\gamma' \gamma$  transformation
- Polished, flat surfaces in dilatometer (10<sup>-6</sup> torr)
- 1000°C for 4 hours











### In Progress Testing Growth of Stable γ AGG Nuclei



- Specimens of Ni-200 (99.8% Ni), IN-625 deformed in tension
  - 5,10,15% deformation
  - Homogeneous deformation in gauge section
- Deformation to act as stored energy for grain growth driving force, but insufficient for recrystallization at diffusion couple temperatures
- Adding super-solvus heat treated RR1000 (stable  $\gamma$  grain size) to test matrix
  - Secondary  $\gamma'$  may act to delay traditional recrystallization until primary  $\gamma'$
- Expect to observe extensive growth of new  $\gamma$  (formerly  $\gamma'$ ) to consume deformed  $\gamma$

## **Future Work**



### **Diffusion Couple Experiments**

- Establish critical strain just below recrystallization at diffusion couple time and temperature
- Demonstrate growth of strain free  $\gamma$  nuclei to consume deformed  $\gamma$

### **Alleviating AGG Phenomena**

- Provide possible processing routes that prevent or reduce AGG phenomena
  - Post-forging short SSHT
  - Lower temperature or high strain rate 'bump' after isothermal forging
- Supports mechanistic understanding of mechanism







## **Challenges & Opportunities**



- Additional insight into isothermal forging of turbine discs may be helpful for providing processing suggestions to avoid AGG
- Performing flat grinding & polishing for diffusion couple surfaces is difficult
  - Sub-micron fluctuations limit bonded surfaces
  - Currently hand grinding & polishing
  - 4mm diameter surface
- Information on recrystallization of low deformation nickel and IN-625 would be helpful



## Center for Advanced **Non-Ferrous Structural Alloys** An Industry/University Cooperative Research Center

## Thank you!

## Byron McArthur bmcarthu@mines.edu







**Center Proprietary – Terms of CANFSA** Membership Agreement Apply