

Center for Advanced **Non-Ferrous Structural Alloys** An Industry/University Cooperative Research Center

Project 33B-L: In-Situ Studies of Strain Rate Effects on Phase Transformation and **Microstructural Evolution in Multi-Principal** Element Alloys

Spring Meeting April 7th – 9th

Student: John Copley (Mines)

Faculty: Amy Clarke (Mines)

Industrial Mentors: Clarissa Yablinsky (LANL), Paul Wilson (Boeing), John Foltz (ATI) Other Participants: Francisco Coury (UFSCAR), Jonah Klemm-Toole (Mines)

Project 33B-L: In-Situ Studies of Strain Rate Effects on Phase Transformation and Microstructural Evolution in Multi-Principal Element Alloys

 Student: John Copley (Mines) Advisor(s): Amy Clarke (Mines) 	MS: September 2018 to August 2020
Advisor(3). Arry Olarke (Willes)	
<u>Problem:</u> The effects of strain rate and temperature on the TRIP/TWIP behavior exhibited by MPEAs are not well understood.	• High rate ($\dot{\epsilon} \approx 10^3 s^{-1}$) tensile tests with simultaneous XRD at the APS
<u>Objective:</u> Determine the relationship between alloying, strain rate and strain state effects on the evolution of deformation twins and deformation	 In-situ observation of FCC→HCP phase transformation during straining Mechanical data showing improved UTS and elongation with increased strain rate
 induced phase changes. <u>Benefit:</u> Improved understanding of TRIP/TWIP behavior seen in other materials, alloy design for 	Preparation for in-situ quasi-static deformation with XRD experiments at CHESS (postponed due to COVID-19)

Metrics			
Description	% Complete	Status	
1. Literature review	75%	•	
2. Quasi-Static Testing	30%	•	
3. Dynamic Testing	80%	•	
4. Ex-situ microstructure characterization and diffraction	35%	•	

specific applications, especially blast resistance.

Industrial Relevance

- Understanding of TRIP/TWIP of MPEAs during high rate deformation
 - New strategies to design deformation mechanisms
 - Drive development of alloys for blast-resistance and performance in extreme environments
- Fundamental understanding of TRIP/TWIP
 - Applications to more commonly used Advanced High Strength Steels and some Ti alloys

Project Vision

Dynamic Fractu DTEM during Highrate Deformation In-situ pRad (Gas Gun) Strain Rate In-situ X ray Imaging and Diffraction (Kolsky Bar & Gas Gun) TEM, ASTAR, XRD 1800 Quasi-static during Quasi-static 7.62 mm Deformation **Taylor Anvil** of Bulk QP3Mn 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 True Strain Dynamic MTS High-Rate Response 100 µm Static Microstructural **Gleeble Testing** Characterization ≈ cm ≈ nm ≈ µm ≈ mm Length Scale

State-of-the-art, multi-scale microstructural characterization with electrons, x-rays, and protons of **TRIP/TWIP** in MPEAs for blast resistance

Figure courtesy of Dr. Amy Clarke

Center Proprietary – Terms of CANFSA Membership Agreement Apply

Multi-Principal Element Alloys

- No definable main element
 - Equiatomic, or
 - Several (>2) components present in very high concentrations
- Almost infinite combinations
- MPEA vs HEA
 - Broader definition than HEAs
 - Strength and toughness do not scale with entropy
 - CoCrNi Family
 - Fails HEA criteria
 - Toughest known CCAs

CANES

B. Gludovatz, et al., Nature Communications, 2016, 7:10602

Twinning and Transformation Induced Plasticity

- Deformation accommodated by change in local atomic stacking
- Increased work hardening rates
 - Burgers vectors are not conserved at twin or phase interfaces
 - The "Dynamic" Hall-Petch Effect
 - High work hardening rates delay instability
- Delayed Instability
 - Increased UTS, elongation
 - Improved toughness

True strain

Figure courtesy of Dr. Kester Clarke

6

TWIP Potential:

- TWIP related to γ_{SFE}
 - Low γ_{SFE} expected in MPEAs
 - Suzuki Interaction
 - Lattice Distortion Energy
- γ_{SFE} correlated with T₀
- Co₃₃Cr₃₃Ni_{33 and} Co_{27.5}Cr₄₅Ni_{27.5} exhibit deformation twinning

TRIP Potential:

- TRIP must occur below T₀
 - High T₀→TRIP possible at elevated T
 - Low T₀→TWIP or slip may be favored

From: E.H. Koster et al. Stacking Fault Energies of Ni-Co-Cr Alloys, The Philosophical Magazine, Series 8, Vol 10 (1964)

SEMI-ANNUAL MEETING – Spring 2020 Cente

Alloy Selection for TRIP and TWIP Effects

- $Co_X Cr_{40} Ni_{60-X}$
 - X=30, 40, 50 at%
 - Inside single phase FCC region
 - Large range in T_0
 - Range from TRIP to TWIP
- CoCrNi

Alloy	Τ ₀ (° C)
CoCrNi	N/A
$Co_{30}Cr_{40}Ni_{30}$	N/A
$Co_{40}Cr_{40}Ni_{20}$	407
$Co_{50}Cr_{40}Ni_{10}$	864
$Co_{55}Cr_{40}Ni_5$	967

Center Proprietary – Terms of CANFSA Membership Agreement Apply

Project Review: Evidence of TRIP in Co₅₅Cr₄₀Ni₅

- In-situ quasi-static deformation at 60°C with synchrotron x-ray diffraction, XRD (performed by Dr. Francisco Coury)
- TRIP observed from -100 to 450°C, before being suppressed above 450°C

F.G. Coury, D. Santana, Y. Guo, J. Copley, L. Otani, S. Fonseca, G. Zepon, C. Kimimami, M.J. Kaufman, A.J. Clarke, 2019 Scripta Materialia, 173:70-74

SEMI-ANNUAL MEETING – Spring 2020

Center Proprietary – Terms of CANFSA Membership Agreement Apply

HCP, FCC Post-mortem EBSD showing nearly 100% transformation $(FCC \rightarrow HCP)$ during

deformation

CANFSA

In-situ Dynamic Testing at APS

Observation of TRIP in Co50 and Co55 During High Rate Deformation

- TRIP and TWIP observed during high rate deformation
- Co50 & Co55 both show evolution of new peak (attributed to HCP $\{10\overline{1}0\}$)
- CoCrNi, Co30 & Co40 do not show evidence of this new peak

Suppression of TRIP in Co40 During High Rate Deformation

- Co40 did not exhibit TRIP during deformation at high rate deformation at either $1 * 10^3 \text{ or } 2 * 10^3 \text{ s}^{-1}$ but does at lower strain rates.
- Believed to be a result of adiabatic heating:
 - In Co55 TRIP suppressed between 450°C – 600°C
 - 50-70% of *T*₀
 - Equivalent range in Co40 is $70^{\circ}C 200^{\circ}C$

Initial Assessment of Mechanical Behavior

- Tests performed using 30psi & 75psi
 - Strain rates of approximately $1 * 10^3 s^{-1}$ & $2 * 10^3 s^{-1}$
- All alloys exhibited similar behavior at $10^3 s^{-1}$
 - Co55 shows greatest difference from others, with higher UTS and lower ductility
- Thank you to Ben for writing the MATLAB code that processes the data

Strain Rate Effects on Mechanical Properties

- Processing of high rate deformation is ongoing
- Initial assessment indicates that increased strain rate results in both increased UTS and elongation
- This behavior is consistent with reported cryogenic testing of CoCrNi alloys

Mechanical response of Co30 TWIP alloy at two strain rates

SEMI-ANNUAL MEETING – Spring 2020 Center Proprietary – Terms of CANFSA Membership Agreement Apply

TRIP and TWIP Observed in CoCrNi

- TRIP behavior seen:
 - At low and high strain rates $(10^{-2}to \ 10^{3} \ s^{-1})$
 - Temperatures from -100°C to 450°C
- TWIP behavior seen:
 - At low and high strain rates $(10^{-2} to 10^{3} s^{-1})$
- Increased *\varepsilon* shows improved mechanical performance

Alloy composition in CoCrNi can be controlled to activate specific deformation mechanisms given knowledge of use conditions.

Continuing Work

- Processing mechanical and diffraction data from APS
 - Matching diffraction to strain, not just time
 - Evaluating $\dot{\varepsilon}$ and alloying effects on phase fraction at different strains
- A deeper dive into the thermodynamics of TRIP and TWIP
 - Thermo-Calc modelling of other TRIP/TWIP alloys with known behavior to compare to CoCrNi
- Quasi-static testing at CHESS (delayed due to COVID-19)
 - Testing of thermal effects on FCC \rightarrow HCP transformation
 - Where does T/T_0 suppress TRIP?
 - How does T/T_0 change the transformed fraction at similar strains?
- Mechanical testing at Mines
 - Strain rates $10^{-2} 10^2 s^{-1}$
 - Interrupted testing
- Post-mortem XRD and EBSD to observe microstructural evolution

Progress

1. Literature Survey and Background **Training on Characterization** 2. Initial TRIP Testing (Co55Cr40Ni5) **Gleeble/Diffraction Post Mortem Characterization** 3. Design of New Alloys **Thermo-Calc and Experimental Matrix** Sample Preparation 4. Model of Strain Rate & Alloying Effects **Testing and Analysis** 5. Model of Temperature and Alloying Effects **Testing and Analysis**

SEMI-ANNUAL MEETING – Spring 2020 Center Proprietary – Terms of CANFSA Membership Agreement Apply

Challenges and Opportunities

• Challenges:

- High rate deformation data is messy
- Coupling of thermodynamic effects (T/T_0) and kinetic effects $(T/T_m$ and $\dot{\varepsilon}$) makes it difficult to determine the causes of switches between TRIP/TWIP/slip
- Opportunities
 - TRIP and TWIP offer a pathway to materials that overcome the strength-ductility tradeoff
 - Understanding of designing TRIP and TWIP into CoCrNi can be extended to other alloy systems, especially Ferich MPEAs

Center for Advanced Non-Ferrous Structural Alloys An Industry/University Cooperative Research Center

Thank you!

John Copley jacopley@mines.edu

Center Proprietary – Terms of CANFSA Membership Agreement Apply

19

MPEAs and Solid Solution Strengthening

- Initial HEA/MPEA studies:
 - Equiatomic compositions
 - Solid solid solution strengthening
- Effective Atomic Radii for Strengthening (EARS)
 - Atoms in solution do not have the radii conventionally used to predict strength
 - EARS radii act as better strength predictors
 - Shows that optimal properties are not correlated with maximum entropy

