

Center for Advanced **Non-Ferrous Structural Alloys** An Industry/University Cooperative Research Center

Solution Heat Treatment and Precipitation in Al-Si-Cu and Al-Si-Cu-Mg Die Castings

Fall 2019 Semi-Annual Meeting Colorado School of Mines, Golden, CO October 9 - 11, 2019

Students: Spencer Randell & Dawson Tong (Mines) Faculty: Steve Midson (Mines) Industrial Mentors: Paul Brancaleon (NADCA)

Center Proprietary – Terms of CANFSA Membership Agreement Apply

Solution Heat Treatment and Precipitation in Al-Si-Cu-Mg Die Castings

 Students: Spencer Randell & Dawson Tong (Mines) Advisor: Steve Midson (Mines) 	Project Duration
 <u>Problem:</u> Historically die castings have not been heat treated, but recent technology developed in Australia allows conventional die castings to be heat treated with minimal blistering. However, A380 (Al-Si-Cu) die casting alloys are not exhibiting the expected strength increase during heat treatment. <u>Objective:</u> Perform a review of the published technical literature for Al-Si-Cu(-X) type alloys to determine if reasons for low strengthening during heat treatment for Al-Si-Cu foundry alloys is understood. <u>Benefit:</u> Understanding of the heat treatment of aluminum die castings will help to optimize mechanical properties, allowing them to better compete with alternate fabrication technologies. 	Recent Progress • Performed a review of the literature of precipitation in Al-Cu, Al-Si-Cu and Al-Si-Cu-Mg casting alloys • Performing additional heat treatment trials
Matri	<u>cc</u>

Metrics				
Description	% Complete	Status		
1. Review the published technical literature of as-cast and heat treated properties for AI-Cu, AI-Si-Cu and AI-Si-Cu-Mg casting alloys	100%	•		
2. Perform additional experimental work to optimize heat treatment for conventional die castings	5%	•		
3. Utilize high resolution x-ray diffraction to characterize precipitates	0%	•		

Center Proprietary – Terms of CANFSA Membership Agreement Apply

Technical Problem and Industrial Relevance

- Traditionally die castings have only been used in as-cast condition
 - New technologies allow die castings to be T6 heat treated
 - SHT + quench + age without blistering
- Heat treating die castings provides significant improvement in mechanical properties
 - Die castings can better compete against other foundry processes
- Precipitation of the main alloy classes not well understood
 - Al-Si-Cu and Al-Si-Cu-Mg

Previous Research: Impact of Aging Treatment on **Hardness in T6 Temper**

Max hardness of 56 HRB

- - Max hardness of 83 HRB
- Addition of 0.3% Mg significantly increases age hardening response

SEMI-ANNUAL MEETING – Fall 2019

Center Proprietary – Terms of CANFSA Membership Agreement Apply

Source: Midson et al. 2015 NADCA Congress

- Research performed in two steps
- <u>Step 1:</u> Summer student (Spencer Randell)
 - Preliminary evaluation of the published literature
 - Has this phenomena been explained?
 - Characterize precipitation in these alloy types
 - θ -phase (Al₂Cu), Mg₂Si, Q-phase (Al₅Cu₂Mg₈Si₆), others

ASM Handbook Data

- Data from the ASM Handbook
 - Al-Si-Cu
 - Al-Si-Cu-Mg

	Chemistry			T6 heat treated properties		
Alloy	Si	Cu	Mg	0.2% YS (ksi)	UTS (ksi)	Elong. (%)
319	6.0	3.5	<0.1	27	40	3
354	9.0	1.8	0.5	41	55	6

• Alloy 354 (0.5% Mg) has better properties than alloy 319 (<0.1% Mg)

Alloy	Condition	0.2% YS (ksi)	UTS (ksi)	Elongation (%)
Al-Si-Mg	As-Cast	15	31	18
Al-Si-Cu		18	44	17
Al-Si-Cu-Mg		29	55	11
Al-Si-Mg	Peak Aged (T6 Heat Treated)	35	44	11
Al-Si-Cu		29	54	11
Al-Si-Cu-Mg		54	70	3

- Data from Sjölander & Seifeddine
 - Measured on tensile samples machined from 4 mm diameter permanent mold castings

SEMI-ANNUAL MEETING – Fall 2019

Source: Sjölander & Seifeddine, 2011

Alloy	Condition	0.2% YS (ksi)	UTS (ksi)	Elongation (%)
Al-Si-Mg		15	31	18
Al-Si-Cu	As-Cast	18	44	17
Al-Si-Cu-Mg		29	55	11
Al-Si-Mg	Peak Aged (T6 Heat Treated)	35	44	11
Al-Si-Cu		29	54	11
Al-Si-Cu-Mg		54	70	3

- Al-Si-Mg alloys
 - Moderate strength after age hardening
 - Good elongation

SEMI-ANNUAL MEETING – Fall 2019

Alloy	Condition	0.2% YS (ksi)	UTS (ksi)	Elongation (%)
Al-Si-Mg		15	31	18
Al-Si-Cu	As-Cast	18	44	17
Al-Si-Cu-Mg		29	55	11
Al-Si-Mg	Peak Aged	35	44	11
Al-Si-Cu	(T6 Heat	29	54	11
Al-Si-Cu-Mg	Treated)	54	70	3

- Al-Si-Cu alloys
 - Low strength after age hardening
 - Good elongation

9

Alloy	Condition	0.2% YS (ksi)	UTS (ksi)	Elongation (%)
Al-Si-Mg	As-Cast	15	31	18
Al-Si-Cu		18	44	17
Al-Si-Cu-Mg		29	55	11
Al-Si-Mg	Peak Aged (T6 Heat Treated)	35	44	11
Al-Si-Cu		29	54	11
Al-Si-Cu-Mg		54	70	3

- Al-Si-Cu-Mg alloys
 - Moderate strength after solution heat treatment
 - Excellent strength after aging, poor elongation

SEMI-ANNUAL MEETING – Fall 2019

Center Proprietary – Terms of CANFSA Membership Agreement Apply

Source: Sjölander & Seifeddine, 2011

Future Work

- <u>Step 2</u>: Undergrad student (Dawson Tong)
 - Continue to perform heat treating trials with Al-Si-Cu alloys
 - Can significant precipitation hardening be produced in magnesium-free ternary Al-Si-Cu alloys?
 - Utilize high resolution x-ray diffraction to characterize precipitates in Al-Si-Cu and Al-Si-Cu-Mg alloys
 - θ -Al₂Cu versus Q-Al₅Cu₂Mg₈Si₆

Center for Advanced Non-Ferrous Structural Alloys An Industry/University Cooperative Research Center

Questions?

Steve Midson SMidson@Mines.edu

303-868-9766

Center Proprietary – Terms of CANFSA Membership Agreement Apply