

Center for Advanced **Non-Ferrous Structural Alloys** An Industry/University Cooperative Research Center

Project 33a-L: In-Situ Studies of Strain Rate Effects on Phase Transformations and Microstructural Evolution in β Titanium

Fall 2019 Semi-Annual Meeting Colorado School of Mines, Golden, Co October 9-11, 2019

- Student: Benjamin Ellyson(Mines)
- Faculty: Prof. Amy Clarke (Mines)
- Industrial Mentors: Austin Mann (Boeing) Clarissa Yablinski (LANL)

Other Participants: Jonah Klemm-Toole (Mines)

Project 33a-L: In-Situ Studies of Strain Rate Effects on Phase Transformations and Microstructural Evolution in β-Titanium

 Student: Benjamin Ellyson (Mines) Advisor(s): Amy Clarke (Mines) 	Project Duration PhD: September 2017 to May 2021								
 <u>Problem</u>: Uniform elongation and work hardening of titanium alloys restricts applications. <u>Objective</u>: Fundamentally understand microstructural evolution in metastable β titanium alloys to develop an alloy design methodology and tailor microstructures and properties. <u>Benefit</u>: Novel titanium alloys for blast and crash resistant applications 	 <u>Recent Progress</u> Ti-10V-2Fe-3Al (wt.%) (Ti-1023) aging study concluded Quasi-static Ti-15Mo (wt%) tensile testing completed Intermediate strain rate testing of Ti-1023 and Ti-15Mo partially completed APS high-rate mechanical and diffraction data screened and post-processed 								

Metrics									
Description	% Complete	Status							
1. Literature review	80%	•							
2. Quasi-static mechanical characterization of Ti-1023 and Ti-15Mo	90%	•							
3. Dynamic testing of Ti-1023 and Ti-15Mo	60%	•							
4. Microstructural characterization of pre- and post-deformed samples	50%	•							
5. In situ characterization of microstructural evolution during deformation	30%	•							

SEMI-ANNUAL MEETING – Fall 2019

Cellular Materials Program Multifunctional

- Multifunctional structures
- Blast resistance

Industrial Relevance: Development of

Blast Resistant Materials for the Navy (

- Thermal management
- Propulsion Materials Program
 - Aircraft and marine engines

Ti-25Nb-3Zr-3Mo-2Sn (wt.%) Alloy Microstructure After Deformation

Deformation-induced ω phase Deformation-induced {112}<111> β mechanical α" phase twinning

H. Zhan, et al. 107 Scripta Materialia (2015): 34-37

Compression at 10⁻³ to 0.18 true strain

SEMI-ANNUAL MEETING - Fall 2019

Multi-scale Studies of TRIP/TWIP During High Rate Deformation

The Effect of Strain Rate on Deformation Mechanisms During Compression of a Ti-10V-3Fe-3AI (wt.%) Alloy

- Deformation mechanisms present at all strain rates:
 - Stress-induced α" martensite
 - $\{332\}<113>\beta$ twinning
 - Stress-induced ω
 phase

– Slip

Ahmed, M., et al. 104 Acta Materialia (2016): 190-200

Natural Aging in Ti-1023

Artificial Aging in Ti-1023 at 423K

TEM of ω -phase Aging

Center Proprietary – Terms of CANFSA Membership Agreement Apply

Over-Aged Specimen (7200s)

1200

Comparison of Over-Aged (7200s, 423K) Microstructure of Ti-1023

Chen et al., Acta Materialia (2019).

DBs : Dislocation bands

XRD indicates that the material is still single phase β , i.e. no martensite is present

Artificial Aging of Ti-1023 for 7200s at 423K inhibits stressinduced martensite and causes dislocation bands to form

SEMI-ANNUAL MEETING - Fall 2019

Lai et al. Acta Materialia 151 (2018): 67-77.

SEMI-ANNUAL MEETING - Fall 2019

ω-phase Strengthening of Stressinduced Martensite in Ti-1023: Overview and Limits

SEMI-ANNUAL MEETING - Fall 2019

Strain Rate Effects on TRIP Ti-1023

SEMI-ANNUAL MEETING - Fall 2019

Strain Rate Effect in TWIP Ti-15Mo

SEMI-ANNUAL MEETING - Fall 2019

APS High-Rate In-situ Kolsky Bar

SEMI-ANNUAL MEETING - Fall 2019

SEMI-ANNUAL MEETING - Fall 2019

Center Proprietary – Terms of CANFSA Membership Agreement Apply

SΔ

Post-Processing: Mechanical

19

Post-Processing: Diffraction

Exact synching remains to be done

Each frame corresponds to 20 µs interval

Interpreting Diffraction Data

- Shift of peak intensity in 2θ indicates a phase change
- Increase in peak intensity indicates crystallite size refinement (twinning)

SEMI-ANNUAL MEETING – Fall 2019

Upcoming work

- Synchronize and analyze mechanical/diffraction data from APS
 - ~46 valid data sets: 19 Ti-1023, 12 Ti-15Mo, 10 Ti-3510 and 5 TiZrNb
 - Bulk Kolsky bar testing at LANL
- Finish intermediate strain rate testing of Ti-1023 and Ti-15Mo
- TEM characterization of deformed material
 - In-situ quasi-static TEM straining at LLNL
- Investigate TWIP control mechanisms
- More Beamtime!
 - 2020 Winter/Spring trimester beamtime request approved at APS
 - CHESS proposal for in-situ quasi-static tensile testing has also been approved for the new year (2020)

Strain Rate Vs. Length Scale Overview: Current Progress

Strain Rate Vs. Length Scale Overview: Current Progress

	AUE	octili	Jan'18	APT.10	111/18	OCTIN	Jan 13	Aprili	141-19	OCTIV	Jan 20	APT-20	111-20	0 ^{ct.20}	Ý
1. Literature Survey and Classes															
Litterature review															
Classes															
Quals															
2. Ti-1023															
Initial characterization															
Compression study															
Tensile testing															
High-strain rate testing															
In-Situ Testing															
3. Ti-15Mo															
Initial characterization															
Heat treatment															
Mechanical Testing															
High-strain rate testing															
4. Thesis write-up															

SEMI-ANNUAL MEETING - Fall 2019

Challenges & Opportunities

- Fine-grained material for Synchrotron experiments is necessary for high-quality diffraction data and consistent small-scale mechanical data
- ω-phase strengthening of TRIP alloys presents a significant opportunity for novel alloy and heat treatment development
- Natural aging of TRIP Ti alloys also presents a novel un-explored avenue in Ti alloy design

Thank you! Benjamin Ellyson bellyson@mines.edu