

## Center for Advanced **Non-Ferrous Structural Alloys** An Industry/University Cooperative Research Center

#### Project 31-L: Accumulative Roll Bonding of Al and Ti Sheets Toward Low Temperature Superplasticity

#### Fall Meeting October 2019

- Student: Brady McBride (Mines)
- Faculty: Dr. Kester Clarke (Mines)
- Industrial Mentors: Ravi Verma (Boeing), John Carpenter (LANL)





#### Project 31-L: Accumulative Roll Bonding of Al and Ti Sheets Toward Low Temperature Superplasticity



| <ul> <li>Student: Brady McBride (Mines)</li> <li>Advisor(s): Kester Clarke (Mines)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                 | Project Duration<br>PhD: September 2017 to March 2021                                                                                                                                                                                                                                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                  |
| <ul> <li><u>Problem</u>: Superplastic forming requires high temperatures and very low strain rates.</li> <li><u>Objective</u>: Develop an in-depth understanding of how accumulative roll bonding affects temperature dependent strength and superplastic properties of AI and Ti alloys.</li> <li><u>Benefit</u>: Low temperature superplasticity could result in reduced cost and cycle time due to reduced deformation temperatures and increased strain rates.</li> </ul> | <ul> <li><u>Recent Progress</u></li> <li>Investigation of lateral constraint to reduce edge cracking in narrow samples</li> <li>Demonstrated enhanced superplasticity of Al 5083 after 5 ARB cycles</li> <li>Trial roll-bonding wider (~3.5") sheets of 5083 at Los Alamos National Laboratory (LANL)</li> </ul> |

| Metrics                                                                              |            |        |  |
|--------------------------------------------------------------------------------------|------------|--------|--|
| Description                                                                          | % Complete | Status |  |
| 1. Literature review                                                                 | 65%        | •      |  |
| 2. ARB process development                                                           | 100%       | •      |  |
| 3. Tensile testing for superplasticity                                               | 5%         | •      |  |
| 4. Microstructural characterization (grain refinement, HT microstructural evolution) | 5%         | •      |  |
| 5. Process refinement / alloy selection for optimized superplasticity                | 0%         | •      |  |

FALL CANFSA MEETING - OCTOBER 2019

Center Proprietary – Terms of CANFSA Membership Agreement Apply

# **Industrial Relevance**





Enhanced properties:

- Hall-Petch strengthening
- low temperature superplasticity

**Applications:** 

- superplastic forming
- high strength sheet components

Benefits:

- reduced cycle time
- reduced die wear
- reduced processing cost

Saito et al., *Acta Materialia*, 1999. Cleveland et al., *Materials Science and Engineering A*, 2003.

FALL CANFSA MEETING - OCTOBER 2019

# **Project Areas**









- Techniques for Edge Crack Mitigation
- Tensile Testing for Superplasticity
- Void Formation during Superplasticity
- Roll Bonding Trials at Los Alamos National Laboratory
- Future Work

# **Mitigation of Edge Cracks**





Constraint trials with 1 ARB Cycle

Constraining with sacrificial "windows" reduces edge cracking and enhances straightness

#### **Tensile Testing for Superplasticity**







Tensile testing parameters:

- temperature 200 500 °C
- constant strain rate, crosshead speed
- 2-step strain rate

#### **Tensile Testing for Superplasticity**



Conventional Superplastic  $$^{\rm \sim}15\,\mu m$$ 

5 Cycles ARB 280 nm x 1 μm x 1 μm



Constant crosshead velocity,  $\dot{\epsilon_0}$  = 10<sup>-3</sup> s<sup>-1</sup>

## Comparison to Literature: Tsuji et al.





## **Comparison to Literature:** Hsiao & Huang





80% HAGB

Hsiao & Huang, *Scripta Materialia*, 1999. Hsiao & Huang, *Met. & Mat. Trans. A*, 1999. FALL CANFSA MEETING – OCTOBER 2019

Center Proprietary – Terms of CANFSA Membership Agreement Apply

#### Void Formation during Superplasticity



5083 5ARB 377 °C ε<sub>0</sub>= 10<sup>-3</sup> s<sup>-1</sup>



Voids form in elongated bands; Centerline bond does not have highest void intensity

FALL CANFSA MEETING – OCTOBER 2019 Center Proprietary – Terms of CANFSA Membership Agreement Apply

#### Void Formation during Superplasticity



#### 5083 5ARB 377 °C $\dot{\epsilon_0}$ = 10<sup>-3</sup> s<sup>-1</sup>



Voids form in bands spaced 15 µm apart; <u>minimum layer thickness</u> after 5 ARB cycles

#### Void Formation during Superplasticity





Nominal thickness of layer after 5 cycles:

$$t = \frac{t_o}{2^n} = \frac{1\text{mm}}{2^5} = 31\mu m$$

# **Void Formation in Literature**





Cleveland et al., Materials Science and Engineering A, 2003.

FALL CANFSA MEETING – OCTOBER 2019 Center Pro

Center Proprietary – Terms of CANFSA Membership Agreement Apply

## ARB trials at Los Alamos National Laboratory





Higher load capacity:

- wider sheets for less edge cracking
- greater sample yield
- roll bond harder materials (Ti)

Larger work rolls:

more redundant shear



Slight misalignment in rolls leads to significant distortion

## **Future Work**



- Microstructural analysis on tensile tested material
- Consider other Al alloys and compositions
  - size and distribution of dispersoids, 2<sup>nd</sup> phase particles
- Investigate bonding interface development
  - Use FIB lift-outs to characterize bond interface development
- Develop process for larger rolling mill at LANL
  - Wider sheets of Al alloys and Ti alloys







# **Challenges & Opportunities**



- Chemical surface preparation of Al, Ti alloys
  - Remove surface oxidation and annealing stains
  - Usually requires dilute Hf solutions in large volumes (wider sheets)
- Access to high capacity rolling mill
  - Adapt existing process for mill at LANL
- Comparison of bonding mechanisms: HIP vs roll bonding
  - Concurrent study with PNNL looking at HIP bonded AI 6061

Thank you! Brady McBride bmcbride@mines.edu

#### References



- [1] Y. Saito, H. Utsunomiya, N. Tsuji, and T. Sakai, "Novel ultra-high straining process for bulk materials—development of the accumulative roll-bonding (ARB) process," *Acta Materialia*, vol. 47, no. 2, pp. 579–583, 1999.
- [2] R. M. Cleveland, A. K. Ghosh, and J. R. Bradley, "Comparison of superplastic behavior in two 5083 aluminum alloys," *Materials Science and Engineering A*, vol. 351, no. 1-2, pp. 228–236, 2003.
- [3] N. Tsuji, K. Shiotsuki, and Y. Saito, "Superplasticity of ultra-fine grained Al-Mg Alloy by ARB," *Materials Transactions*, vol. 40, no. 8, pp. 765–771, 1999.
- [4] Hsiao, I. C., and J. C. Huang. "Development of low temperature superplasticity in commercial 5083 Al-Mg alloys." *Scripta Materialia*, vol. 40, no. 6, pp. 697-703, 1999.
- [5] Hsiao, I. C., and J. C. Huang. "Deformation mechanisms during low-and high-temperature superplasticity in 5083 Al-Mg alloy." *Metallurgical and Materials Transactions A*, vol. 33, no .5, pp. 1373-1384, 2002.

# **Superplastic Deformation**





Constant crosshead displacement,  $\dot{\epsilon_0}$  = 10<sup>-3</sup> s<sup>-1</sup>

FALL CANFSA MEETING – OCTOBER 2019 Center Proprietary – Terms of CANFSA Membership Agreement Apply

## AI 5083 5 ARB Grain Structure





68 % HAGB

80 % HAGB

Apparent grain size: 250 nm x 1 μm x 1 μm