

Center for Advanced Non-Ferrous Structural Alloys An Industry/University Cooperative Research Center

Project 22: Development of Novel High Temperature Aluminum Alloys

Fall 2019 Semi-Annual Meeting Colorado School of Mines, Golden, CO October 9 - 11, 2019

Student: Joe Jankowski (Mines, ATI)

Faculty: Michael Kaufman, Amy Clarke, Robert Field, Steve Midson (Mines) Industrial Mentors: Krish Krishnamurthy (Honeywell), Paul Wilson (Boeing)

Project 22: Development of Novel High Temperature Aluminum Alloys

 Student: Joe Jankowski (Mines) Advisors: Michael Kaufman, Amy Clarke (Mines) 	Project Duration PhD: June 2015 to December 2019
 <u>Problem</u>: Aluminum alloys with acceptable high temperature structural properties are expensive and difficult to produce. <u>Objective</u>: Develop high-temperature, high-strength Al alloys without use of rapid solidification by forming stable microeutectic. <u>Benefit</u>: Reduce production cost and increase selection of high performance high-temperature Al alloys. 	Recent Progress • Defended thesis

Metrics		
Description	% Complete	Status
1. Develop experimental protocols for reproducible castings	100%	•
2. Mechanical testing and characterization of microeutectic-containing microstructures	100%	•
3. Develop crystallography / phase stability knowledge of α -phase	100%	•
4. Assess ability to produce microeutectic in chill castings	100%	•
5. Determine how fundamental solidification parameters affect microeutectic formation	100%	•

Project Motivation

- Microeutectic between AI and α-AI₁₃(Fe,V)₃Si in chill castings
- Hardness of microeutectic similar to RS8009
- Lower cooling rate than rapidly solidified alloys
 - 10³ vs. 10⁶ K/s
- High microstructural stability at elevated temperatures

Alloy	Al (at%)	Fe (at%)	V (at%)	Si (at%)
RS8009	Bal.	4.3	0.7	1.7

RS8009 Microstructure

- Good tensile strength up to 315 °C
- Requires rapid solidification (~10⁶ K/s)
- Strengthened by fine dispersion of $AI_{13-x}(Fe,V)_{3}Si_{x}\alpha$ -phase intermetallic

AI + α-Phase Microeutectic

- α-phase also forms eutectic with AI at cooling rates of $\sim 10^3$ K/s
- Eutectic can have hardness similar to rapidly solidified 8009
- Potential for thermally stable strengthening mechanism at lower cooling rates
- AI + α -phase microeutectic

Industrial Relevance

- Aluminum alloys are temperature-limited
- Fe-rich alloys have high performance and cost
- Large gap between conventional alloys and rapidly solidified alloys
- Potential for cost savings in material selection

[1] M.A. Phillips and S.R. Thompson (1994). Air Force Materiel Command

- [2] ASM International (1990). ASM Handbook Vol. 2
- [3] A.W. Gunderson (1969). Air Force Materials Laboratory
- [4] J. Lee (2001). NASA 398 Material Properties Data Sheet.

h-Phase in 8009 castings

CANFSA CENTER FOR ADVANCED NON-FERROUS STRUCTURAL ALLOYS

- Competitive h-phase particles
 - Brittle phase
 - Coarse, dendritic morphology
- Need to identify method of removing hphase and promote AI + α -phase eutectic

<u>Identify + characterize alloy compositions that:</u>

- **1**. Promote α -phase formation (over h-phase)
- 2. Retain thermal stability of RS8009
- 3. Promote Al + α -phase eutectic

4. Potential applications for additive manufacturing

h-Phase Crystal Structure

- Double Mackay (DM) icosahedra have nearbulk Fe:V ratio
- "Glue" regions are enriched in one of the two transition metals
- "Segregation" of Fe,V within unit cell to preferential sites

Fe (at%)

4.3

V (at%)

0.7

Al (at%)

Bal.

α-Phase Stability at Arbitrary Compositions

- Valence electron counting from transition metal content of α -phase
- Likelihood of formation estimated from electronic density of states (DOS)

α-Al ₁₂ X ₃ Si ₂ ternary phase	Deficient/excess valence electrons per atom
Ti	-3
V	-2
Nb	-2
Cr	-1
Мо	-1
Mn	0
Fe	1
Со	2
Ni	3
Cu	4

Calculated DOS for theoretical α -Al₁₃M₃Si₂ phases

Predicted α-Phase Compositions

- Fe:Mn ratio can range from 0:1 to 3:1 (conservatively) [1]
 Al_{83-x}Mn₁₇Si_x to ~Al_{83-x}Fe₁₃Mn₄Si_x
- Define this composition range as "stable" electron counts
- Can extend to arbitrary compositions by balancing electrons

[1] C.J. Simensen and A. Bjørneklett (2017). Light Metals 2017

Experimental Validation

α -phase compositions from WDS

α (at%)
Al-14.5Fe-3.0V-11.1Si
Al-13.4Fe-4.0V-11.6Si
Al-11.2Fe-6.3Cr-12.0Si
Al-9.5Fe-7.8Cr-12.4Si
Al-7.8Si-11.2Fe-6.1Cr
AI-7.6Si-9.6Fe-7.6Cr
AI-7.3Si-2.4Cr-0.8V-0.4Co-6.9Fe-7.2Mn
AI-6.1Si-3.0Cr-1.4V-0.3Co-6.6Fe-6.6Mn
Al-6.5Si-2.6Cr-1.1V-6.5Fe-7.1Mn
AI-7.3Si-2.4Cr-0.9V-6.9Fe-7.4Mn
AI-5.5Si-3.6Cr-6.9Fe-6.9Mn
Al-15.3Fe-1.7Mo-0.8V-4.3Si
AI-7.6Fe-7.7Mn-1.7Mo-0.9V-4.5Si
AI-7.6Fe-8.0Mn-2.2Cr-5.2Si
AI-7.5Fe-7.9Mn-2.4Cr-6.4Si
AI-7.4Fe-7.8Mn-2.3Cr-4.8Si
AI-7.5Fe-7.6Mn-2.3Cr-5.7Si
AI-7.3Fe-7.5Mn-2.7Cr-4.3Si

Electron counting predicts variety of α-phase compositions.

SEMI-ANNUAL MEETING – Fall 2019

Selection of Novel Alloy Compositions

- Cr substitutions for V shown in previous work to suppress h-phase [1]
 - In agreement with crystal structure
 - Cr has higher diffusivity than V in AI [2]
- 8009 has high equilibrium liquidus
 - High superheats required
 - Mn lowers equilibrium liquidus
 - Reduced solubility of low diffusivity elements

DSC cooling curves for 8009 and model Al-Fe-Mn-Cr-Si alloys

V (at%) Alloy AI Fe Mn Cr Si (at%) (at%) (at%) (at%) (at%) 35 Bal. 1.5 1.5 0.4 1.6 Bal. 1.8 1.8 1.8 40 0.5 Bal. 2.0 2.0 2.1 45 0.6 50 Bal. 2.2 2.2 0.7 2.3 1.8 8009 Bal. 4.4 0.6

 J. Jankowski *et al.* (2019). Light Metals 2019
 K. Knipling, D. Dunand, and D. Seidman (2006). Z. Metallkd.

SEMI-ANNUAL MEETING – Fall 2019

SEMI-ANNUAL MEETING - Fall 2019

Center Proprietary – Terms of CANFSA Membership Agreement Apply

"Phase Diagram" of Al + α-Phase Eutectic

- Fe:Mn ratio of 1:1, AI-Fe-Mn-Si quaternary alloy
- Only AI, α-phase, liquid shown
- AI + α-phase coupled growth possible due to undercooling
- Three possible solidification modes: primary Al, coupled growth, and primary α-phase

Alloy	Al (at%)	Fe (at%)	Mn (at%)	Cr (at%)	Si (at%)
35	Bal.	1.5	1.5	0.4	1.6
40	Bal.	1.8	1.8	0.5	1.8
45	Bal.	2.0	2.0	0.6	2.1
50	Bal.	2.2	2.2	0.7	2.3

As-Cast Microstructures

- Continuous transition between microstructures
- Cooling rates compatible with conventional processing routes [1,2]
- Cooling rates required increase with alloying

Cooling Rates Required for Formation (K/s)						
		Ν	<i>A</i> icrostruc	ture	;	
Alloy	Prim	Primary Al Coupled Growth		d า	Pr α-j	rimary phase
35	>2	200	200-1,00	00		n/a
40	>{	500	400-1,000		<	<400
45	>1	,000	>500	<		<500
50	>2	,000	>500 <5		<500	
Alloy	Al (at%)	Fe (at%)	Mn (at%)	(a	Cr t%)	Si (at%)
35	Bal.	1.5	1.5	C).4	1.6
40	Bal.	1.8	1.8	C).5	1.8
45	Bal.	2.0	2.0	C	0.6	2.1
50	Bal.	2.2	2.2	C).7	2.3

[1] M. Okayasu et al. (2012). Materials Science and Engineering A

[2] M. Okayasu et al. (2014). Materials Science and Engineering A

SEMI-ANNUAL MEETING - Fall 2019

Microhardness of As-Cast Microstructures

- Primary AI microstructures have higher microhardness than eutectic colonies
- Microhardness increases with transition metal concentration

Alloy	Microstructure	HV (Avg.)	St. Dev.
35	Primary Al	91	5.2
	Coupled Growth	78	3.0
40	Primary Al	111	4.0
	Coupled Growth	102	3.1
45	Primary Al	129	2.7
	Coupled Growth	95	2.8
50	Primary Al	135	4.6
	Coupled Growth	108	4.4
8009	Extrusion As-Provided	135	14

Primary Al

Alloy	Al (at%)	Fe (at%)	Mn (at%)	Cr (at%)	Si (at%)
35	Bal.	1.5	1.5	0.4	1.6

As-Cast Microstructure—Primary Al

Bal

Bal.

20

2.2

- Primary AI solidification observed in all alloys
- Requires higher cooling rates as transition metal content increases

Primary AI dendrites are
Mn-rich

45

50

20

2.2

21

2.3

06

0.7

Alloy 35 Microstructural Stability

Primary AI microstructure after 100 hours at 370 °C

Alloy	AI (at%)	Fe (at%)	Mn (at%)	Cr (at%)	Si (at%)
35	Bal.	1.5	1.5	0.4	1.6

Alloy 35 Microstructural Stability

- Evolution of precipitates at temperatures of at least 315 °C
- Potential cause of hardness drop

Alloy	Microstructure	HV (Avg.)	St. Dev.
35	Primary Al	91.2	5.2
	Primary AI (100 hr at 260 °C)	90.2	3.2
	Primary AI (100 hr at 370 °C)	79.7	2.8

BFTEM on AI dendrites after 100 hours at temperature

SEMI-ANNUAL MEETING – Fall 2019

Alloy 35 Elevated Temperature Testing

- Negligible changes in strength after 100 hours at temperature
- Superior strength retention vs. Al-Cu alloys at elevated temperatures

Heat	Test	YS (ksi)	Alloy 35
Treatment	Temperature		26
n/a	Ambient	28, 30, 30	0 100
0.5 hr 260 °C	260 °C	17	
100 hr 260 °C	260 °C	17, 19	
0.5 hr 315 °C	315 °C	17	[1] M.A. Phillips and S Materiel Comm
100 hr 315 °C	315 °C	14, 16	[2] ASM International ([3] A.W. Gunderson (1
0.5 hr 370 °C	370 °C	13	[4] J. Lee (2001). NAS
100 hr 370 °C	370 °C	14	
SEMI-ANNUAL MEETING – F	-all 2019 Center Proprie	etary – Terms of CANFSA M	embership Agreement Apply

FERROUS STRUCTURAL ALLOYS

 M.A. Phillips and S.R. Thompson (1994). Air Force Materiel Command
 ASM International (1990). ASM Handbook Vol. 2
 A.W. Gunderson (1969). Air Force Materials Laboratory

1] J. Lee (2001). NASA 398 Material Properties Data Sheet.

Processing vs. Properties

- Yield strengths estimated from hardness:yield strength of alloy 35 (bulk)
- Primary AI microstructures
- Potential for significantly higher strength than high temperature AI-Cu alloys
- Cooling rates consistent with die casting, strip casting [1,2]

[1] M. Okayasu *et al.* (2012). Materials Science and Engineering A [2] M. Okayasu *et al.* (2014). Materials Science and Engineering A

Microstructure-Cooling Rate-Solidification Velocity Relationships in Alloy 35

- Calculated from autogenous welding experiment
- Cooling rates of ~60 K/s required for Al + α-phase microstructures
- Primary AI achievable at cooling rates above ~300 K/s
- Higher solidification velocity seems to promote primary Al

Microstructures present as function of cooling rate and solidification velocity

Additive Manufacturing Alloy Design

 h-Phase grows in competition with α-phase dispersoids

Two approaches to h-phase removal

- 1. Substitution of Fe and V by elements with different valence electron counts (Mo,Mn)
- 2. Increasing Si content (at stoichiometric levels)

<u>Goal</u>

- Lowest coarsening rates
- Fine dispersoids of α-phase

Diffusivity of select elements in Al matrix from [1]

Element	Diffusivity at 400 °C (m ^{2*} s ⁻¹)
Fe	5.41*10 ⁻¹⁸
V	4.85*10 ⁻²⁴
Мо	5.52*10 ⁻²³
Mn	6.24*10 ⁻¹⁹

Compositions of alloys studied (at%)

Alloy	AI	Fe	Mn	Мо	V	Si
8009	Bal.	4.4	n/a	n/a	0.6	1.7
RS1	Bal.	4.4	n/a	0.4	0.2	2.3
RS2	Bal.	2.2	2.2	0.4	0.2	2.3

[1] K.E. Knipling, D.C. Dunand, and D.N. Seidman (2006). Z. Metallkd

XRD Analysis—Phase Identification

- No detectable h-phase in chill castings of RS1 or RS2.
- Only Al and α-phase detected

Alloy	ΑΙ	Fe	Mn	Мо	V	Si
8009	Bal.	4.4	n/a	n/a	0.6	1.7
RS1	Bal.	4.4	n/a	0.4	0.2	2.3
RS2	Bal.	2.2	2.2	0.4	0.2	2.3

α-Phase/Dispersoid Morphology CANFSA

- RS1, RS2 do not appear to contain hphase (from XRD)
- Fine dispersoids in RS1, better primary particle selection

Alloy	Al	Fe	Mn	Мо	V	Si
8009	Bal.	4.4	n/a	n/a	0.6	1.7
RS1	Bal.	4.4	n/a	0.4	0.2	2.3
RS2	Bal.	2.2	2.2	0.4	0.2	2.3

ROUS STRUCTURAL ALLOYS

Summary/Conclusions

- Developed AI + α -phase eutectic and dispersoid alloys
- Properties at room temperature and elevated temperature appear similar to commercial high-temperature AI-Cu alloys
- Can be produced at cooling rates achievable through conventional processing (die casting, strip casting)
- Difficult to produce—microstructure strongly dependent on parameters like undercooling, solidification velocity
- Potential for significant increases in elevated temperature strength over AI-Cu alloys processed similarly

SEMI-ANNUAL MEETING - Fall 2019

Center for Advanced Non-Ferrous Structural Alloys An Industry/University Cooperative Research Center

Thank you!

Joe Jankowski jjankows @mines.edu

