

Center for Advanced **Non-Ferrous Structural Alloys** An Industry/University Cooperative Research Center

Project #36A-L: Rationalization of Liquid/Solid and Solid/Solid Interface Instabilities During Thermal – Mechanical Transients of Metal Additive Manufacturing

Fall 2019 Semi-Annual Meeting Colorado School of Mines, Golden, CO October 9 - 11, 2019

Student: Alec Saville (Mines) Faculty: Amy Clarke (Mines) Industrial Mentors: TBD Other Participants: Sven Vogel (LANL), Adam Creuziger (NIST)

Project 36A-L: Rationalization of Liquid/Solid and Solid/Solid Interface Instabilities During Thermal – Mechanical Transients of Metal Additive Manufacturing

Student: Alec Saville (Mines)Advisor(s): Amy Clarke(Mines)	Project Duration PhD: 2018 - 2022
 <u>Problem</u>: Control of material properties in metallic additive manufacturing (AM) is difficult due to a lack of background knowledge on material evolution within AM production methods. <u>Objective</u>: Evaluate differences in material properties of Ti-6AI-4V as a function of scan strategy in additive manufacturing processes. 	 <u>Recent Progress</u> Finished processing of neutron diffraction data. Completed initial quantification of texture components. Evaluated proper specimen symmetry for experimental results.
 <u>Benefit</u>: Greater understanding of material evolution in AM will inform predictive capabilities and improve performance of AM parts. 	Began development of standardized processing routine for neutron diffraction data.

Metrics				
Description	% Complete	Status		
1. Literature review.	75%	•		
2. Process neutron diffraction data.	100%	•		
3. Quantification of texture components.	50%	•		
4. Supporting material characterization.		•		
5. Development of instructional material to standardize neutron diffraction data processing.		•		

Multidisciplinary University Research Initiative (MURI), Office of Naval Research

Spatial and Temporal Transients during AM -Temperature Gradients (Ti-6AI-4V) and Temperature Contours (Inconel 718)

Spatial-temporal thermomechanical boundary conditions may trigger complex interface stabilities and defect generations...

Courtesy of S.S. Babu, University of Tennessee

)

Project Recap

Objective: Quantify differences in crystallographic texture as a function of scan strategy and build height of additively manufactured (AM) Ti-6Al-4V.

Motivation:

- AM produced metals exhibit large degrees of anisotropy
 - Prevents metallic AM from being used for high performance parts
- Greater understanding of how anisotropic behavior forms is required to inform predictive capabilities and material performance
 - *Crystallographic texture* major contributor to anisotropy

Texture in AM Ti-6AI-4V

- Thermal gradients form columnar eta-Ti grains
 - Strong {001} orientation for β -Ti
- α-Ti normally exhibits relatively random texture
 - Changes with AM process
- Function of build parameters
 - Scan strategy
- Altering scan strategy alters local thermal history
 - Potentially give rise to changes in preferred orientations

Ti-6Al-4V produced via wire-based EBF³. (C.A. Brice, W.A. Tayon, A.L. Pilchak, Texture Development in Titanium Components Made by Additive Manufacturing, San Diego. (2014)

Past Work

SEMI-ANNUAL MEETING - Fall 2019

Sample Production

- Rectangular Ti-6Al-4V prisms
 - 15 mm x 15 mm x 25 mm
- Built using an ARCAM A2X
 - Electron beam melting (EBM)
 - ARCAM-provided Ti-6Al-4V powder
 - Chamber preheat of 470°C
- Three different scan strategies to vary local thermal history
 - Random (Spot)
 - Dehoff (Spot)
 - Raster

Example EBM build process employing a Raster scan strategy. Credit: Arcam AB

https://vimeo.com/227802177

SEMI-ANNUAL MEETING - Fall 2019

Layer 1

Ζ

Finished Specimens

62.9 64.7 66.6 68.5 70.4

57.2 59.1 61

High-Pressure-Preferred-Orientation (HIPPO) neutron He³ Detector diffraction beamline

- Los Alamos National Laboratory (LANL)
- Detects diffraction events via He³ detectors
 - Create texture profiles
- Time-of-flight detection (TOF)
- Capable of variable scan times
- 10 mm nominal diameter neutron beam

Schematic of the HIPPO beamline at LANL

Determining Crystallographic Texture

Advantages of HIPPO

- Neutrons allow for analyzing larger volumes – 1000 mm³
- Environmental control

 In-situ heating/cooling
- Capable of bulk and local scans
 - Bulk texture (~ 600 mm³)
 - Local texture (~ 150 mm³)

Data Processing

- Rietveld refinement using MAUD software package
 - Generates texture file
- Large number of parameters
 - Phase fraction
 - Lattice parameters
 - Differential calibration value
 - Debye-Waller factor
- Large amount of variability in processing
- Requires iterative process
 - Identify suitable parameter values for consistent analysis

Quantifying Texture

- MAUD file imported into MATLAB MTEX plugin
- Enables manipulation and quantification of texture information
- 1. Updated pole figures
 - Qualitative texture assessment
 - General trends in texture
- 2. Orientation distribution functions (ODF)
 - Quantitative operations

Example updated pole figures (top) and ODF (bottom) generated using MTEX.

Recent Work

SEMI-ANNUAL MEETING - Fall 2019

Recent Work

- 1. Finished processing data using MAUD
 - Observed texture changes with scan strategy but not build height
- Developing instructional documentation for standard operating procedure in MAUD
 Need for standardization demonstrated
- 3. Analysis of ODF's and updated pole figures
 - Initial quantification of texture components
 - Findings inconsistent with literature
 - Specimen symmetry
 - Fiber texture observed in all diffraction experiments

Crystallographic Texture Trends

- α-Ti texture changes with scan strategy
- α-Ti texture does not change considerably with build height

Analysis Details:

- Only analyzing α -Ti textures
 - β -Ti phase fraction ~ 1-4%
 - Insufficient for confident texture analysis (>5%)
- Build direction (BD)=Into screen

BD ●→→ Y

Scan Strategy	1 mm Build Height	23 mm Build Height
Dehoff α-Ti		
Random α -Ti		
Raster α-Ti		(0002) 4 3 2 1

If we change parameter values and states with another 2-3 refinement iterations...

Gives motive to create unifying process documentation for calculating texture.

SEMI-ANNUAL MEETING - Fall 2019

Gives motive to create unifying process documentation for calculating texture.

SEMI-ANNUAL MEETING - Fall 2019

Quantifying Texture

- Primary texture components differed from those reported in literature
- Underlying assumption on specimen symmetry varied
 - Orthotropic vs. triclinic specimen symmetries
- Changes quantification results considerably
 - Further evaluation required

Triclinic?

Orthotropic?

Orthotropic Specimen Symmetry (Implies symmetry in processing operations - eg: rolling)

SEMI-ANNUAL MEETING – Fall 2019

Random Scan Strategy Specimen

Orthotropic Specimen Symmetry (Implies symmetry in processing operations - eg: rolling)

Random Scan Strategy Specimen

(Implies symmetry in processing operations - eg: rolling)

Random Scan Strategy Specimen

(Implies symmetry in processing operations - eg: rolling)

3

2

1

0

Random Scan Strategy Specimen

(Implies symmetry in processing operations - eg: rolling)

Random Scan Strategy Specimen

SEMI-ANNUAL MEETING – Fall 2019

Random Scan Strategy Specimen

SEMI-ANNUAL MEETING – Fall 2019

Orthotropic Specimen Symmetry

Orthotropic Specimen Symmetry

Triclinic Specimen Symmetry

Evaluating Periodicity

Evaluating Periodicity

Evaluating Periodicity

Is a triclinic specimen symmetry more appropriate for AM metals?

Presence of a Fiber Texture

- Fiber texture observed in all three scan strategy specimens
- Suspected to be basal fiber texture
- Orientation and intensity varies with scan strategy
 - Intensity Scale: Random > Dehoff > Raster
- Formation not completely understood
 - Indications of dynamic recrystallization during build process?
 - Evidence of orientation relationship between α -Ti and β -Ti?
 - Assumes strong {001} β -Ti solidification texture

Raster Fiber Texture

- Fiber texture along φ=0°
- Displays some characteristics of orthotropic specimen symmetry
- Overall weak intensity

Dehoff Fiber Texture

- Fiber along ϕ = 0-20°
- Moderately stronger intensity
- Shows minimal characteristics of orthotropic specimen symmetry

Random Fiber Texture

- Distinct fiber
 - Variable Euler coordinates
- Moderately stronger intensity
- Demonstrates no orthotropic characteristics

Raster (Down ϕ =0°)

Dehoff (Down ϕ =0-20°)

- 1. Crystallographic texture changes with scan strategy
- 2. Texture does not vary considerably with build height
- 3. Triclinic specimen symmetry more appropriate for experimental results
 - a. Suggests new assumption for analyzing texture in AM materials?
- 4. Fiber texture present in all three scan strategies
 - a. Throughout build height
- 5. Standardization of processing texture data required

Challenges & Opportunities

- Issues in processing neutron diffraction data arose from lack of previous literature
 - Finer details of analysis
 - Outside information required
 - Troubleshooting
- Standardization of process required
- Opportunity to develop instructional dataset and documentation

Planned Work:

- Develop instructional material for greater scientific community on processing neutron diffraction data in MAUD
 - Video demonstrations
 - Publication documentation

Center for Advanced Non-Ferrous Structural Alloys An Industry/University Cooperative Research Center

Thank you!

Any comments, questions, or feedback?

Alec Saville asaville @mymail.mines.edu

Project #36A-L: Rationalization of Liquid/Solid and Solid/Solid Interface Instabilities During Thermal – Mechanical Transients of Metal Additive Manufacturing

Student: Alec Saville

Faculty: Amy Clarke

Industrial Partners: TBD

Project Duration: August 2018 – May 2022

Achievement

 Quantification of crystallographic texture differences in additively manufactured (AM) Ti-6AI-4V as a function of scan strategy and build height

Significance and Impact

 Understanding evolution of texture enables a greater understanding of anisotropy in AM parts, informing predictive capabilities and confidence of AM part performance.

Research Details

 Finished neutron diffraction data processing and began initial quantification efforts

lpha-Ti Pole figures for the Random scan strategy .

specimen

 α -Ti fiber texture observed in the Random scan strategy specimen

Project #36A-L: Rationalization of Liquid/Solid and Solid/Solid Interface Instabilities During Thermal – Mechanical Transients of Metal Additive Manufacturing Student: Alec Saville

Faculty: Amy Clarke

Industrial Partners: TBD

Project Duration: August 2018 – May 2022

Program Goal

 Quantify differences in crystallographic texture as a function of scan strategy and build height of additively manufactured (AM) Ti-6AI-4V.

Approach

 Utilize neutron diffraction, Rietveld refinement using the MAUD software package, and MATLAB quantification to identify trends in crystallographic texture of AM Ti-6AI-4V.

Benefits

 Greater understanding of how anisotropic behavior forms will better inform predictive capabilities and increase confidence in metallic AM for higher end applications.

lpha-Ti Pole figures for the Random scan strategy

specimen

α-Ti fiber texture observed in the Random scan strategy specimen