

Center for Advanced **Non-Ferrous Structural Alloys** An Industry/University Cooperative Research Center

Project 37-L: Advanced Engineered Coatings with Extended Die Life for Tooling

Fall 2019 Semi-Annual Meeting Colorado School of Mines, Golden, CO October 9 - 11, 2019

Student: Nelson Delfino de Campos Neto (Mines) Faculty: Steve Midson, Andy Korenyi-Both, Michael Kaufman (Mines). Industrial Mentors: Paul Brancaleon (NADCA), Rob Mayer (Queen City Forging Co.)

Project 37-L: Advanced Engineered Coatings with Extended Die Life for Tooling

 Student: Nelson Delfino de Campos Neto (Mines) Advisor(s): S. Midson; A. Korenyi-Both, M. Kaufman	Project Duration
(Mines)	PhD: August 2018 to July 2023
 <u>Problem</u>: Molten aluminum tends to solder to die faces during the die casting process. Lubricants are applied to the die to reduce soldering and adhesion, but the lubricant reduces part quality. <u>Objective</u>: Identify PVD coatings to be applied to die casting dies to prevent the soldering. Understand the mechanisms involved with adhesion. <u>Benefit</u>: Increase die casting part quality, eliminate the use of lubricants, extend die life and reduce cost-perpart. 	 <u>Recent Progress</u> Literature review Development of an improved adhesion test Performed initial trials using the new adhesion test Selected and obtained a number of PVD coated substrates Initial characterization of cast samples

Metrics							
Description	% Complete	Status					
 Literature review and development of an improved adhesion test that simulates the die casting process 	30%	•					
2. Identification of the mechanisms that controls the adhesion behavior.	15%	•					
3. Identification of a working layer coating that avoids molten aluminum soldering and adhesion.	15%	•					
4. Development of a coating architecture that will add sufficient durability to the die coatings to allow them to survive as long as the die casting die itself (100,000 shots)	0%	•					
5. In-plant trials. Guidelines for depositing the coating system on die components/tooling.	0%	•					

Industrial Relevance

- Reducing or eliminating lubricant spray will:
 - -Significantly **improve the quality** of the die castings
 - Reduce gas porosity and scrap
 - Allow castings to be used in higher performance applications

-<u>Reduce costs</u>

- Eliminate purchase costs for lubricants
- Reduce effluent clean-up costs
- Significantly extend die life

Improve productivity

• Faster cycle rates

Project Tasks

- 1. Develop improved adhesion test
- 2. Define mechanism controlling wetting and adhesion of molten aluminum to coating
- 3. Develop a coating architecture to provide long life
- 4. Conduct in-plant trials
- 5. Create guidelines for depositing the coating on tooling

Previous Adhesion Test

- Previous project developed a laboratory test
 - To measure adhesion of aluminum to coating

• Drawback:

 Top pouring can carry oxide layer from the upper surface of molten aluminum into crucible to reduce contact between aluminum and material coupon

Task 1: Improved Adhesion Test

Graphite

- Use induction melting
- Rapid heating to melt aluminum (~10 minutes)
 - Less oxidation and disintegration of crucible walls

Modified Test Apparatus

- After aluminum has been poured into lower chamber
- Lower section is placed into resistance furnace pre-heated to 700°C

1st Test Using Induction Melting

- Melted aluminum in induction coil
- Pulled stopper rod
- Molten aluminum fell onto room temperature substrate and solidified

No carbon layer

Al oxides stayed in the melting crucible

Planned Initial Experiments

- Temperature and time
 - -700 °C; 3 different holding times
 - 15mins, 1 hr, 4 hrs
- Material
 - -Uncoated H13 steel substrate
 - Ground to 120 mesh SiC finish
 - Ground to 600 mesh SiC finish
 - Polished to 1µm

Temperature Profiles

- Similar behavior in temperature profile for H13 steel substrate after bottom pouring and placed in 700 °C pre-heated resistance furnace
 - ~13 minutes to reach 700 °C

Bare H13 (ground 120 mesh)

- Soldering occurred between molten aluminum & H13 steel substrate
 - For all times, aluminum adhered to substrate

15 min

1 hour

4 hours

SEMI-ANNUAL MEETING – Fall 2019

Bare H13 (ground 600 mesh)

- Soldering occurred between molten aluminum & H13 steel substrate
 Area of reaction was only small after 15 minutes
- Aluminum separated from steel during cooling to room temperature

Polished H13 (1µm diamond)

- Similar reaction occurred between molten aluminum & H13 steel substrate
 - Area of reaction was much larger for 15 minute sample
- Aluminum separated from steel during cooling to room temperature

H13 Steel polished substrates

Solidified Al cylinders

Influence of Surface Finish: Published Data

- Testing performed by Gobber et al. in Italy
 - Examined impact of surface roughness on adhesion of molten Al to H13 steel
 - Rougher H13 substrate resulted in less contact between solidified aluminum and steel
- Similar to current results
 - We saw less adhesion/reaction after 15 minutes for the rougher (600 mesh)

Further Improvements to Adhesion Test

- Eliminate the graphite mold
 - Use of a H13 mold (sprayed with BN)

Modification of Test Apparatus

- Aluminum bottom poured into H13 mold
- Placed into resistance furnace pre-heated to 700°C
- Different holding times at 700 °C
 - Avoids disintegration of graphite mold

Different sample geometry

• Can use same procedure for testing Ø3/8" rods

- Different sample geometry possible
 - 1"x1" flat plate
 - Ø3/8" rod

Test in Controlled Atmosphere

- Continue using bottom pouring concept
- Reduce oxide formation by melting in controlled atmosphere
- Higher injection speed of molten aluminum into mold
 - Better simulation of the die casting process
- Pre-heating of substrate possible
 - Less oxidation of substrate due to inert gas

1st Test in Controlled atmosphere CANFSA

SEMI-ANNUAL MEETING - Fall 2019

PVD Coated Samples

• Range of PVD coatings have been obtained

• 1"x1" flat plates (3 samples) and 3/8" diameter rods (2 samples)

	Coating	Finish	Supplier	Tested During Lube Free project
surface finish	TiCN	as-deposited	Supplier #2	NO
		Post treatment	Supplier #2	NO
	AlCrN	as-deposited	Supplier #2	YES
		Post treatment	Supplier #2	YES
	WC+C	as-deposited	Supplier #3	NO
	ZrN	as-deposited	Supplier #2	NO
	CrN	as-deposited	Supplier #1	YES
	CrC	as-deposited	Supplier #1	NO
	MoN	as-deposited	Supplier #1	NO
	TaN	as-deposited	Supplier #1	NO
	VC	as-deposited	Supplier #1	NO
	AlCrCN	as-deposited	Supplier #2	NO
	TiAlSiN	as-deposited	Supplier #2	NO

Different coating compositions and post-treatments will be evaluated.

Summary & Conclusions

- Developed a modified adhesion test using induction heating and initial tests have been performed
 - 120 mesh ground H13: aluminum soldering occurred
 - 600 mesh ground H13: aluminum soldering occurred, but the interface cracked separating the solidified aluminum and the steel
 - 1 $\mu{\rm m}$ polished H13: same results as the 600 mesh, but more aluminum soldered with the 15 minutes test

Summary & Conclusions

- A further improvement in the test apparatus has been made to avoid disintegration of the graphite mold
 - Next tests will be performed using this setup.
- A number of PVD coatings have been deposited onto H13 flat substrates (1"x1") and 3/8" diameter rods
 - These will be tested in the near future

Future Work

- Literature review
 - Characterize PVD coatings currently used by die casters and other industries
 - Characterize chemical interactions between liquid metals and solid materials
 - Examine mechanisms involved with wetting of solids by liquid metals
- Experimental work
 - Characterization of PVD coatings deposited onto H13 substrates
 - Adhesion test using the PVD coated samples
- Characterization of aluminum adhesion tested samples
 - Examine the phases formed at the interface between the solidified aluminum and the tested substrates

Challenges & Opportunities

- The PVD equipment at Mines is currently inoperative due to loss of controlling software. Manual control is being attempted.
- Targeting an improved laboratory adhesion test that simulates the commercial die casting process
 - The main focus has been on trying to minimize the influence of aluminum oxide on the test
 - Controlled atmosphere, improved control of substrate temperature and performing multiple sequential tests are additional goals
- Also attempting a different approach other than PVD
 - Thermal sprayed samples will also be tested in the aluminum adhesion test.

Progress

 This research is sponsored by the DLA – Troop Support, Philadelphia, PA and the Defense Logistics Agency Information Operations, J62LB, Research & Development, Ft. Belvoir, VA

Center for Advanced Non-Ferrous Structural Alloys An Industry/University Cooperative Research Center

Thank you!

Nelson Delfino de Campos Neto ndelfino@mymail.mines.edu

Project 37 - Advanced Engineered Coatings with Extended Die Life for Tooling

Student: Nelson Delfino de Campos Neto

Faculty: Steve Midson; Michael Kaufman

Industrial Partners: Paul Bracaleon (NADCA), Rob Mayer (Queen City Forging Co.)

Project Duration: Aug. 2018 – July 2023

Achievement

 Identify PVD coatings to be applied to die casting dies to avoid the molten aluminum soldering. Understand the adhesion mechanisms involved.

Significance and Impact

 Increase die casting parts quality, eliminate the use of lubricants, extend die life and reduce costper-part.

Research Details

 Develop an advanced laboratory test to simulate the aluminum die cast process in order to find the best PVD coatings and understand the adhesion mechanisms involved.

Project 37 - Advanced Engineered Coatings with Extended Die Life for Tooling

Student: Nelson Delfino de Campos Neto Faculty: Steve Midson; Michael Kaufman Industrial Partners: Paul Bracaleon (NADCA), Rob Mayer (Queen City Forging Co.)

Project Duration: Aug. 2018 – July 2023

Program Goal

 Identify PVD coatings to be applied to die casting dies to avoid the molten aluminum soldering. Understand the adhesion mechanisms involved.

Approach

• Develop an advanced laboratory test to simulate the aluminum die cast process, to identify the best PVD coatings and understand the adhesion mechanisms involved.

Benefits

 Increase die casting parts quality, eliminate the use of lubricants, extend die life and reduce costper-part.

