

Center for Advanced **Non-Ferrous Structural Alloys** An Industry/University Cooperative Research Center

Project 33B-L: In-Situ Studies of Strain Rate Effects on Phase Transformation and **Microstructural Evolution in Multi-Principal Element Alloys**

Fall 2019 Semi-Annual Meeting Colorado School of Mines, Golden, CO October 9 - 11, 2019

Student: John Copley (Mines)

Faculty: Amy Clarke (Mines)

Industrial Mentors: Clarissa Yablinsky (LANL), Paul Wilson (Boeing), John Foltz (ATI) Other Participants: Francisco Coury (UFSCAR), Jonah Klemm-Toole (Mines)

Project 33B-L: In-Situ Studies of Strain Rate Effects on Phase Transformation and Microstructural Evolution in Multi-Principal Element Alloys

Student: John Copley (Mines)Advisor(s): Amy Clarke (Mines)	Project Duration MS: September 2018 to Summer 2020
 <u>Problem</u>: The effects of strain rate and state and temperature on the TRIP/TWIP behavior exhibited by MPEAs are not well understood. <u>Objective</u>: Determine the relationship between alloying, strain rate and strain state effects on the evolution of deformation twins and deformation induced phase changes. <u>Benefit</u>: Improved understanding of TRIP/TWIP behavior seen in other materials, alloy design for specific applications, especially blast resistance. 	 <u>Recent Progress</u> Material production and characterization of effects of processing (rolling, heat treatment) on grain size and phase. Determination of methods for better sample preparation for in-situ testing at the Advanced Photon Source

Metrics			
Description	% Complete	Status	
1. Literature review	75%	•	
2. Quasi-Static Testing	30%	•	
3. Dynamic Testing	25%	•	
4. Multi-scale in-situ imaging and diffraction	35%	•	

Industrial Relevance

- Understanding of TRIP/TWIP of MPEAs during high rate deformation
 - New strategies to design deformation mechanisms
 - Drive development of alloys for blast-resistance and performance in extreme environments
- Fundamental understanding of TRIP/TWIP
 - Applications to more commonly used Advanced High Strength Steels and some Ti alloys

Project Vision

Dynamic Fractu DTEM during Highrate Deformation In-situ pRad (Gas Gun) Strain Rate In-situ X ray Imaging and Diffraction (Kolsky Bar & Gas Gun) TEM, ASTAR, XRD 1800 Quasi-static during Quasi-static 7.62 mm Deformation **Taylor Anvil** of Bulk QP3Mn 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 True Strain Dynamic MTS High-Rate Response 100 µm Static Microstructural **Gleeble Testing** Characterization ≈ cm ≈ µm ≈ mm ≈ nm Length Scale

State-of-the-art, multi-scale microstructural characterization with electrons, x-rays, and protons of **TRIP/TWIP** in MPEAs for blast resistance

Figure courtesy of Dr. Amy Clarke

Center Proprietary – Terms of CANFSA Membership Agreement Apply

- No definable main element
 - Equiatomic, or
 - Several (>2) components present in very high concentrations
- Almost infinite combinations
- MPEA vs HEA

MPEAs

- Broader definition than HEAs
 - Strength and toughness do not scale with entropy
- CoCrNi Family
 - Fails HEA criteria
 - Toughest known CCAs

B. Gludovatz, et al., Nature Communications, 2016, 7:10602

MPEAs and Solid Solution Strengthening

- Initial HEA/MPEA studies:
 - Equiatomic compositions
 - Solid solid solution strengthening
- Effective Atomic Radii for Strengthening (EARS)
 - Atoms in solution do not have the radii conventionally used to predict strength
 - EARS radii act as better strength predictors
 - Shows that optimal properties are not correlated with maximum entropy

Twinning and Transformation Induced Plasticity

- Deformation accommodated by change in local atomic stacking
- Increased work hardening rates
 - Burgers vectors are not conserved at twin or phase interfaces
 - The "Dynamic" Hall-Petch Effect
 - High work hardening rates delay instability
- Delayed Instability
 - Increased UTS, elongation
 - Improved toughness

True strain

Figure courtesy of Dr. Kester Clarke

Center Proprietary – Terms of CANFSA Membership Agreement Apply

Why are MPEAs Good Candidates for TRIP/TWIP

- Shown to occur in some MPEAs
 - CoCrNi, FeCoCrNi, FeMnCoCr, FeMnCoCrNi
- High occurrence of twins is expected (low SFE)
 - Suzuki Interaction
 - Lattice Distortion

Isopleths in γ_{SFE} for CoCrNi Ternary Ranging from $9 * 10^{-7} - 5.6 * 10^{-6} J/cm^2$ (0.5-3*Gb*)

From: E.H. Koster et al. Stacking Fault Energies of Ni-Co-Cr Alloys, The Philosophical Magazine, Series 8, Vol 10 (1964)

SEMI-ANNUAL MEETING – Fall 2019

Center Proprietary – Terms of CANFSA Membership Agreement Apply

- T₀: The diffusionless transformation temperature
 - Free energy and composition of HCP and FCC phases are the same
 - High T₀ indicates the possibility of TRIP behavior at elevated temperatures
- Alloy Selection
 - High chromium alloys for higher T₀ values→ possibility of TRIP at high temperatures
 - Constrained by FCC single phase region (at 1100°C, black dashed line)
 - Surrounded by σ -phase
 - Alloys for study have been selected along Co_xCr₄₀Ni_{60-x} (dotted red line)
 - Values of X=0.55, 0.50, 0.40, 0.30

Project Review: Evidence of TRIP in Co₅₅Cr₄₀Ni₅ at 60°C

- Low Temperature Deformation (Co₅₅Cr₄₀Ni₅):
 - Transformation from FCC→HCP as strain increases
 - Onset of transformation at or near yielding

-oad

CANFSA

SEMI-ANNUAL MEETING – Fall 2019

Thanks to Ben Ellyson for the figure

Pneumatic

Actuator

Diffraction

In-situ Dynamic Testing at APS

- In-situ Kolsky Bar, X-ray imaging and diffraction experiments
 - $-\dot{\epsilon} \sim 10^3 \, s^{-1}$
- Alloys tested:
 - $Co_{50}Cr_{40}Ni_{10}$
 - $Co_{40}Cr_{40}Ni_{20}$
 - $Co_{30}Cr_{40}Ni_{30}$
 - $\text{Co}_{33.3}\text{Cr}_{33.3}\text{Ni}_{33.3}$
- Loading in both tension and compression

Project Review: APS Simulation vs Experimental Results

- No apparent change in FCC (200) 1st Harmonic peak intensity
 - Expected for Co30
 - Peak is difficult to discern in Co50, but transformation may have occurred
 - High intensity from 2nd harmonic washes out 1st harmonic peaks

Project Review: Twinning Seen by Domain Refinement

CANFSA CENTER FOR ADVANCED NON-FERROUS STRUCTURAL ALLOYS

- Evolution of full rings
 - Crystallite refinement \rightarrow twinning \rightarrow TWIP
 - Seen in all alloys and strain rates tested at APS

Recent Work

- Making material \rightarrow making material into samples
 - Cast material (from Dr. Coury Co55, Co40)
 - Arc melted material (all other alloys)
 - Needs to be rolled
 - 50g limit

- Recent Findings
 - Cr₂O₃ particles in cast material
 - Multi-phase microstructures in low Co content alloys

Multi-Phase Buttons \otimes

100

Single Phase Achieved

Chromium Oxides in Cast Material

- Co40 and Co55 ingots have Cr rich oxides
 - Potentially detrimental to mechanical properties
 - Reduced rolling tolerance from 75% to 25%

SEMI-ANNUAL MEETING – Fall 2019

 \cap

Removing Oxides?

- $2Cr+3/2O_2 \rightarrow Cr_2O_3$
 - Favorable beyond melting point of alloy—in air
 - Cannot be dissolved
- May be able to re-melt in vacuum to drive reaction leftwards

Plot of reaction constant vs temperature for the dissociation of Cr_2O_3 (green). The blue line shows the point at which the reaction becomes favorable, the orange dashed line shows the approximate melting point of the alloy.

TRIP and TWIP Observed in CoCrNi

- TRIP behavior seen:
 - At low strain rates $(10^{-2}s^{-1})$
 - Temperatures from -100°C to 450°C
 - In Co₅₅Cr₄₀Ni₅, predicted to TRIP by Thermo-Calc modelling
- TWIP behavior seen:
 - At high strain rates $(10^3 s^{-1})$
 - Across a range of CoCrNi alloys

Alloy composition in CoCrNi can be controlled to activate specific deformation mechanisms given knowledge of use conditions.

Continuing Work

- Developing methods of material processing
 - Aiming for single phase, fine-grained material for mechanical testing
- Upcoming testing at CHESS and APS (Early 2020)
 - For APS new sample geometries and improved heat treatment methods have been designed
- Mechanical testing at Mines
 - Strain rates $10^{-2} 10^2 s^{-1}$
 - Interrupted testing
 - Post-mortem XRD and EBSD to observe microstructural evolution

Progress

8/18 11/18 3/19 6/19 9/19 12/19 4/20 7/20 **1. Literature Survey and Background Training on Characterization** 2. Initial TRIP Testing (Co55Cr40Ni5) **Gleeble/Diffraction Post Mortem Characterization** 3. Design of New Alloys **Thermo-Calc and Experimental Matrix Sample Preparation Testing and Analysis** 4. Unified Model **Model Refinement** 5. Thesis Writing Report Defense

Challenges and Opportunities

• Challenges:

- Making material is difficult
 - Arc melted buttons require rolling → texture evolution
 - Spray forming → Porous material
 - Casting → large Cr-oxide inclusions
- Opportunities
 - Understanding of designing TRIP and TWIP into CoCrNi can be extended to other alloy systems

Center for Advanced Non-Ferrous Structural Alloys An Industry/University Cooperative Research Center

Thank you!

John Copley jacopley@mines.edu

Center Proprietary – Terms of CANFSA Membership Agreement Apply

Center for Advanced **Non-Ferrous Structural Alloys** An Industry/University Cooperative Research Center

Project 33B-L: In-Situ Studies of Strain Rate Effects on Phase Transformation and Microstructural **Evolution in Multi-Principal Element Alloys**

Student: John Copley

Faculty: Amy Clarke

Goals

Modeling of deformation behavior as it pertains to microstructural changes in MPEAs

Significance and Impact

The TRIP/TWIP behavior seen in some MPEAs results in high work hardening behavior, resulting in an increased ductility, toughness and blast resistance.

Research Details

In-situ diffraction tests will show microstructural evolution (twins or HCP phase in a FCC matrix) which can be compared to the strain rate, strain state and alloy composition to allow alloy design for specific applications

Center Proprietary – Terms of CANFSA Membership Agreement Apply

Project 33B-L: In-Situ Studies of Strain Rate Effects on Phase Transformation and Microstructural Evolution in Multi-Principal Element Alloys

Student: John Copley

Faculty: Amy Clarke

Goals

Modeling of deformation behavior as it pertains to microstructural changes in **MPFAs**

Significance and Impact

The TRIP/TWIP behavior seen in some MPEAs results in high work hardening behavior, resulting in an increased ductility, toughness and blast resistance.

Research Details

In-situ diffraction tests will show microstructural evolution (twins or HCP phase in a FCC matrix) which can be compared to the strain rate, strain state and alloy composition to allow alloy design for Specific applications

CANFSA

Center Proprietary – Terms of CANFSA Membership Agreement Apply

SEMI-ANNUAL MEETING – Fall 2019

Project 33B-L: In-Situ Studies of Strain Rate Effects on Phase Transformation and Microstructural Evolution in Multi-Principal (Element Alloys

Student: John Copley

Faculty: Amy Clarke

Project Duration: Sept. 2018 – May 2020

Program Goal

 Modeling of deformation behavior as it pertains to microstructural changes in MPEAs

Approach

 In-situ diffraction tests will show microstructural evolution (twins or HCP phase in a FCC matrix) which can be compared to the strain rate, strain state and alloy composition to allow alloy design for specific applications

Benefits

• The TRIP/TWIP behavior seen in some MPEAs results in high work hardening behavior, resulting in an increased ductility, toughness and blast resistance.

