

Center for Advanced **Non-Ferrous Structural Alloys** An Industry/University Cooperative Research Center

Project 30: Microstructural Development of Metallic Alloys during Rapid Solidification

Fall 2019 Semi-Annual Meeting Colorado School of Mines, Golden, CO October 9 - 11, 2019

Student: Chloe Johnson (Mines) Faculty: Amy Clarke (Mines) Industrial Mentors: Paul Wilson (Boeing), John Carpenter (LANL) Other Participants: Gus Becker (Mines), Jonah Klemm-Toole (Mines), Yaofeng Guo (Mines), Francisco Coury (UFSCAR), Joe Mckeown (LLNL)

Project 30: Microstructural Evolution of Metallic Alloys during Rapid Solidification

Student: Chloe Johnson (Mines)Advisor(s): Amy Clarke (Mines)	Project Duration PhD: August 2017 to May 2021
 <u>Problem</u>: Rapid solidification results in novel assolidified microstructures, the evolution of which is not well understood. <u>Objective</u>: Understand the correlation of rapid solidification conditions to the development of metastable phases, novel microstructures, and grain morphology effects in aluminum alloys. <u>Benefit</u>: Inform microstructural prediction to improve alloy design and solidification conditions for rapid solidification processes (e.g. additive manufacturing (AM)). 	 <u>Recent Progress</u> Initial image processing of in-situ solidification experiments performed using the Additive Manufacturing (AM) simulator at the Advanced Photon Source (APS) at Argonne National Lab (ANL) Top-down characterization of 6061 Reactive Metal Powder (RAM) alloy designed for AM by Elementum 3D & wrought 6061 from experiments performed using the AM simulator at the APS at ANL Phase identification and investigation of microstructural selection in AI-Ge samples generated using dynamic transmission electron microscopy (DTEM) Preparing for qualifying exam in October 2019

Metrics					
Description	% Complete	Status			
1. Literature review	50%	•			
2. In/ex-situ characterization of metastable phase formation in rapidly solidified, faceting AI-Ge alloys	85%	•			
3. In/ex-situ investigation of grain morphology and size in AI 6061 and 6061 RAM alloys	15%	•			
4. Evaluation of effect of solidification conditions on microstructural development in RAM AM builds (performed in collaboration with Elementum 3D)	5%	•			

Industrial Relevance

- Solidification conditions have a significant impact on final microstructure
- Rapid solidification generates novel microstructures, metastable phases, and a variety of grain morphologies
- Binary/model alloys present an opportunity to understand these novel microstructures on a fundamental level that can serve to inform industrial processes

Post-mortem TEM image of Al-Cu alloy film after DTEM solidification. J.T. McKeown *et al.*, *Acta Materialia*, 65 (2014) 56-68.

Industrial Relevance

- Aluminum alloys currently used in AM are mostly traditional stock alloys (e.g. 7075, 6061, 2024)
- Under AM conditions these alloys tend to form columnar grains, and are subject to solidification cracking
- These results imply a need for alloys designed specifically for AM

Inverse pole figure of 3D-printed stock 7075, build direction is vertical to the page. Taken from J. H. Martin et al. *Nature*, 549 (2017) 365-369.

Grain Size Control via Innoculants in AM Alloy Powders

J. H. Martin et al. *Nature,* 549 (2017) 365-369.

Grain Size Control via Innoculants in AM Alloy Powders

SEMI-ANNUAL MEETING – Fall 2019

Reactive Metal Powder (RAM) Alloys for AM

Schematic of in-situ MMC/RAM process for Ti matrix and TiB₂ particles. Taken from H. Attar et al, *International Journal of Machine Tools and Manufacturing*, 133 (2018) 85-102.

- Also known as in-situ MMC alloys
- Powders of two different components react with each other (or the matrix) to form inoculant particles
- Advantages of RAM:
 - Uniform distribution
 - Enhanced interfacial bonding
 - Can pin grain boundaries

Al 6061 Reactive Metal Powder (RAM) Alloy Designed for AM: Initial CANESA Characterization

BSE SEM image of Al 6061 RAM alloy powder

SEM image of Al 6061 RAM AM build

APS Additive Manufacturing Simulator Set-up

Schematic of AM simulator used for in-situ experiments at ANL. Taken from: C. Zhao et al., *Scientific Reports*, 7 (2017) 1-11.

SEMI-ANNUAL MEETING – Fall 2019

Selected Samples & Laser Parameters

- Samples were made to be 1-1.5 mm thick and 40-50 mm in length
- Experiments were performed on 3 types of samples:
 - Al 6061 wrought base plate with 6061 powder
 - Al 6061 wrought base plate with 6061 RAM powder
 - AI 6061 RAM AM build base plate with 6061 RAM powder
- The same iterations of laser passes were performed on each of these samples:

Experimental parameters for laser passes				
Iteration	Laser Power (W)	Laser Speed (m/s)		
1	416	0.3		
2	416	0.5		
3	520	0.3		
4	520	0.5		

APS AM Simulator Animations: Al 6061 MMC Alloy vs. Wrought 6061

CANFSA CENTER FOR ADVANCED NON-FERROUS STRUCTURAL ALLOYS

Animation of laser pass on 6061 wrought + 6061 powder, 416 W, 0.5 m/s

Animation of laser pass on Al 6061 RAM build + Al 6061 RAM powder 416 W, 0.5 m/s

SEMI-ANNUAL MEETING – Fall 2019 Center Proprietary – Terms of CANFSA Membership Agreement Apply

Possible Solidification Cracking CANFSA Observed in Al 6061

Radiography image of laser pass on 6061 wrought + 6061 powder (laser settings of 416 W, 0.5 m/s) showing possible cracking immediately following solidification.

SEMI-ANNUAL MEETING - Fall 2019

Top Down View Imaging of 6061 & 6061 RAM Alloys

Secondary electron SEM image of laser raster of Al 6061 RAM build + Al 6061 RAM powder 416 W, 0.5 m/s

Secondary electron SEM Image laser raster of 6061 wrought + 6061 powder, 416 W, 0.5 m/s

Observed Grain Structure in Top Down View Images

Secondary electron SEM image of laser raster of Al 6061 RAM build + Al 6061 RAM powder, 416 W, 0.3 m/s

Backscatter SEM image of laser spot weld of 6061 wrought + 6061 powder, 520 W, 2 ms dwell time

Image Processing: Tracking of S/L Interface

Animation of laser pass on 6061 wrought + 6061 powder, 416 W, 0.5 m/s

SEMI-ANNUAL MEETING - Fall 2019

Solidification Velocity Measurements

127

Frame Number

132

Radiography image of melt pool and point used for velocity measurements

Table 30.1: Average velocity and standard deviation				
values for each material				
Base	Dourdor	Average velocity	Standard	
Plate	Powder	(m/s)	deviation	
6061	6061	0.40	0 1654	
wrought	0001	0.40	0.1054	
6061	6061			
RAM AM		0.39	0.1226	
build	KAIVI			

122

0.1 0

117

137

Future Work

- Identify grain morphology (columnar vs. equiaxed) in the cross-sections of these melt pools
- Correlate observed microstructures in samples to solidification conditions
- Use initial data as a stepping stone to plan future, more complex, experiments

Metastable Monoclinic Phase in Al-Ge Alloys: Our Interests

- Explore proposed metastable phase diagram that includes M phase
- Samples ranged from 46-76 at.%Ge

(1991).

Dynamic Transmission Electron Microscopy (DTEM)

J. D. Roehling et al., Acta Mat, 131:22-30 (2017).

SEMI-ANNUAL MEETING – Fall 2019

Observed Microstructural regions

- Below 50.5 at.% Ge, M phase was the primary phase, surrounded by M + α eutectic
- Above 50.5 at.% Ge, β phase was the primary phase, surrounded by a few different types of microstructures:
 - α -dendrites surrounded by either α + β or M + α eutectic
 - M + α eutectic

Morphologies of M+α Eutectic

BF STEM images taken by Francisco Coury and Yaofeng Guo

Conclusions & Future Work

- Local microstructure between primary phases is determined by local solute conditions
- Various morphologies of M+ α eutectic have been observed based on the primary phase that forms and local solute conditions

Challenges & Opportunities

- Sample preparation & EBSD of Al samples
- Project goals:
 - Compare G & R in RAM vs. traditional 6061
 - G & R relationship can trigger grain morphology transitions in 6061 (not fully explored), while the effects in RAM alloys have not been evaluated
 - Consider experiments using: multiple laser passes/re-melts at varying time delay, settings, & offset (in-situ), preheating temperature (exsitu)
 - Effect of delay time on re-melt zone size, possible cracking (solidification/residual stress), fraction of reacted powder (RAM), and grain size

Thank you!

Chloe Johnson

chloejohnson@mines.edu

Thank you!

Chloe Johnson

chloejohnson@mines.edu

APS Additive Manufacturing Simulator Set-up

Synchrotron x-ray imaging of a Ti-6Al-4V plate sample in laser melting processes and solidification rate measurements. C. Zhao et al., *Scientific Reports* (2017).

SEMI-ANNUAL MEETING – Fall 2019

AI-Ge DTEM Melt Pools

- Melt pools are roughly 50-70 μ m in diameter
- β phase particles formed throughout the melt pool
- Average solidification velocity was found to be ~ 0.08-0.15 m/s

Left: TEM image of 70-76 at.% Ge film with 5 melt pools taken by Yaofeng Guo **Right:** Sequence of 9 images of a melt pool taken using DTEM on a 46 (left) and 63 at.% Ge sample (right).

Increasing Time

Microstructural Selection: Dendritic vs. Eutectic Regions

SEMI-ANNUAL MEETING - Fall 2019

Microstructural Selection: Dendritic vs. Eutectic Regions

Microstructural Selection: CANFSA **Dendritic vs. Eutectic Regions** CENTER FOR ADVAN ERROUS STRUCTURAL ALLOYS β phase particles Edge of melt pool 1000 63 at. % Ge High volume fraction of β 800 Liquid remperature, °C Liquid L+β 600 28.4 L+α 63 at.% Ge Edge of melt 420°C pool 400 α + β eutectic 33 β particles α+β M+a α dendrites 200 20 40 60 80 100 5 µm 50.5 0 HAADF TEM image taken by Yaofeng ATOMIC PERCENT Ge Guo

Microstructural Selection: Dendritic vs. Eutectic Regions

Initial Characterization of RAM 6061

Overview

- Alloy design for AM
 - Metal matrix composite (MMC) & reactive metal powder (RAM) alloys
 - Additive manufacturing simulator at the Advanced Photon Source (APS) at Argonne National Laboratory (ANL)
 - Initial post-mortem findings from top down imaging
 - Extraction of solidification velocity from radiography
- Metastable phase development in Al-Ge
 - Previous observation of metastable monoclinic phase in Al-Ge
 - Dynamic transmission electron microscopy (DTEM)
 - Observed microstructures & suggested formation conditions

AI-Ge DTEM Melt Pools

- Melt pools are roughly 50-70 μm in diameter
- β phase particles formed throughout the melt pool
- Average solidification velocity was found to be ~ 0.08-0.15 m/s

Left: TEM image of 70-76 at.% Ge film with 5 melt pools taken by Yaofeng Guo Right: Sequence of 9 images of a melt pool taken using DTEM on a 63 at.% Ge sample

