

Center for Advanced **Non-Ferrous Structural Alloys** An Industry/University Cooperative Research Center

Project 17: Characterization of Microstructure Evolution in Nickel-Titanium-Hafnium Intermetallics

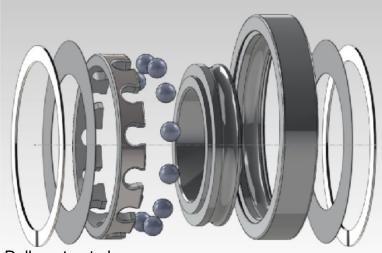
Fall 2019 Semi-Annual Meeting Colorado School of Mines, Golden, CO October 9 - 11, 2019

Student: Sean Mills (Mines)

Faculty: Aaron Stebner (Mines), Behnam Aminahmadi (Mines)

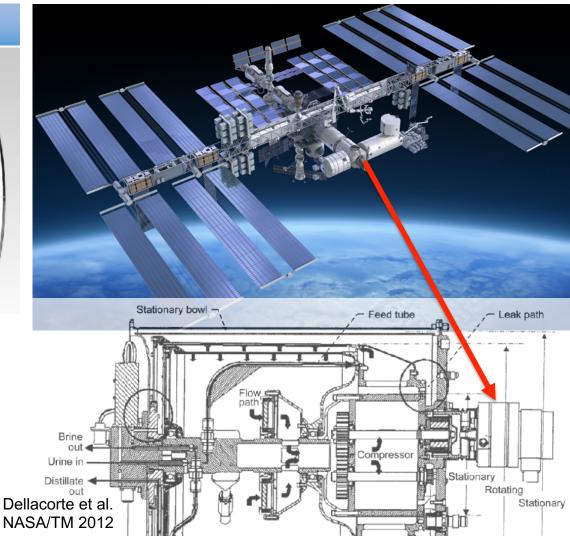
Industrial Mentor(s): Christopher Dellacorte (NASA), Ronald Noebe (NASA)

Project 17: Characterization of Microstructure Evolution in Nickel-Titanium-Hafnium Intermetallics


 Student: Sean Mills (Mines) Advisor(s): Aaron Stebner (Mines) 	Project Duration PhD: August 2015 to December 2019
 <u>Problem</u>: Ni-Ti alloys experience high residual stress due to rapid quenching processes. The result is cracking and machining distortion. Not quenching leads to low hardness. <u>Objective</u>: Elucidate the effect of Hf ternary alloying on metallurgy and bearing element performances. <u>Benefit</u>: Hf-alloying could lead to reduction in residual stress by eliminating the need for rapid cooling while retaining high strength and hardness levels of quenched binary Ni-Ti. 	 <u>Recent Progress</u> Rolling contact fatigue (RCF) tests on Ni_{50.3}Ti_{46.7}Hf₃ and Ni₅₆Ti₃₆Hf₈ and Ni₅₅Ti₄₅ alloy specimens TEM characterization of microstructure evolution in deformed Ni₅₆Ti₃₆Hf₈, Ni₅₄Ti₄₅Hf₁ and Ni₅₅Ti₄₅ alloys Identification and structure analysis of Ni₁₆Ti₁₁ phase Thesis writing

Metrics							
Description	% Complete	Status					
1. Residual stress and hardness testing on $Ni_{55}Ti_{45}$ & $Ni_{54}Ti_{45}Hf_1$ (NASA)	100%	•					
2. Literature review	90%	•					
3. Rolling contact fatigue characterization of $Ni_{54}Ti_{45}Hf_1$ alloy	90%	•					
4. Subsurface deformation analysis of Ni ₅₆ Ti ₃₆ Hf ₈ alloy	80%	•					
5. Alloy optimization – vary nickel and hafnium contents by 1-8 at%	90%	•					

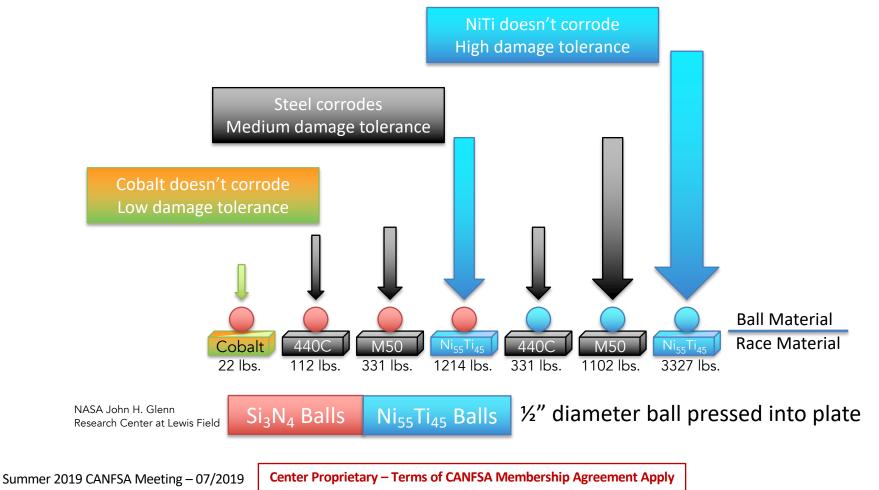
Application: Water recycling system on International Space Station



Rotating Centrifuge Bearing

Dellacorte et al. NASA/TM 2012

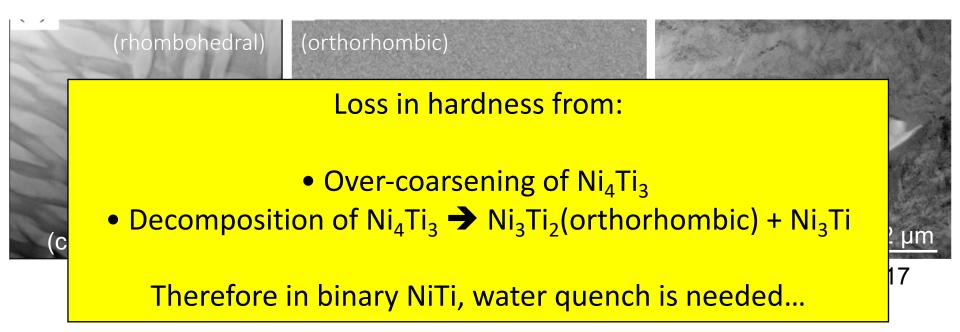
> Components are exposed to corrosive urine environment. Corrosion-resistant alloy system is needed!


Summer 2019 CANFSA Meeting – 07/2019

Center Proprietary – Terms of CANFSA Membership Agreement Apply

Nickel-rich Ni-Ti alloys show superior damage resistance

Dent Resistance Load Capacity



In 52-56 at.% NiTi alloys, stoichiometry ∼Ni₄Ti₃ → Rapid formation of Ni₄Ti₃

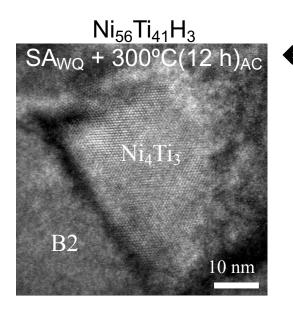
$B2_0 \rightarrow B2_1 + Ni_4Ti_3 \rightarrow B2_2 + Ni_3Ti_2 \rightarrow B2_3 + Ni_3Ti_3$

Precipitation process for Ni-rich NiTi (Nishida et. al 1986)

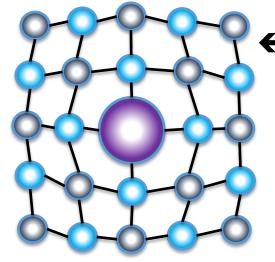
 \rightarrow Additional aging promotes the formation of unwanted phases (Ni₃Ti₂ and Ni₃Ti)

Binary Ni-Ti bearing races are susceptible to untimely failures

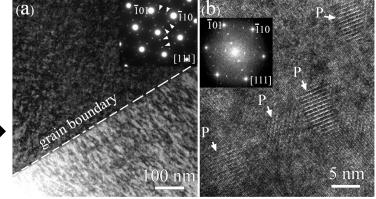
Residual stresses due to large undercooling (water quench) → fracture post-machining


National Aeronautics a John H. Glenn Resea

Summer 2019 CANFSA Meeting - 07/2019

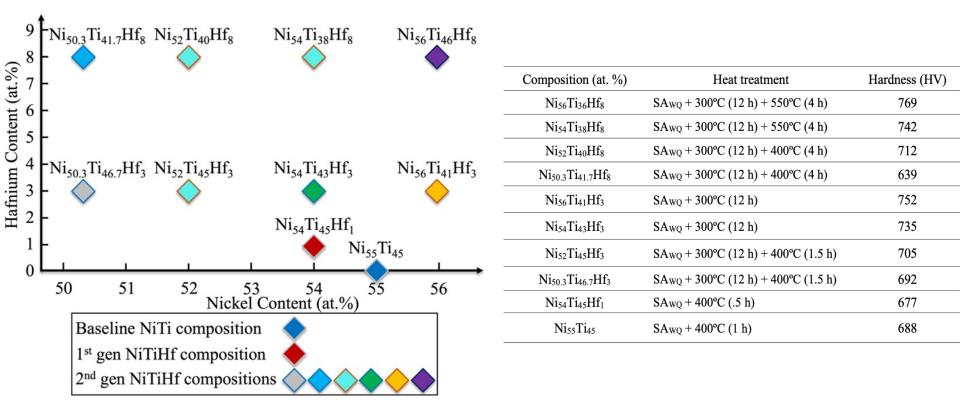

Center Proprietary – Terms of CANFSA Membership Agreement Apply

Subtle Hf additions in Ni-Ti CANFSA



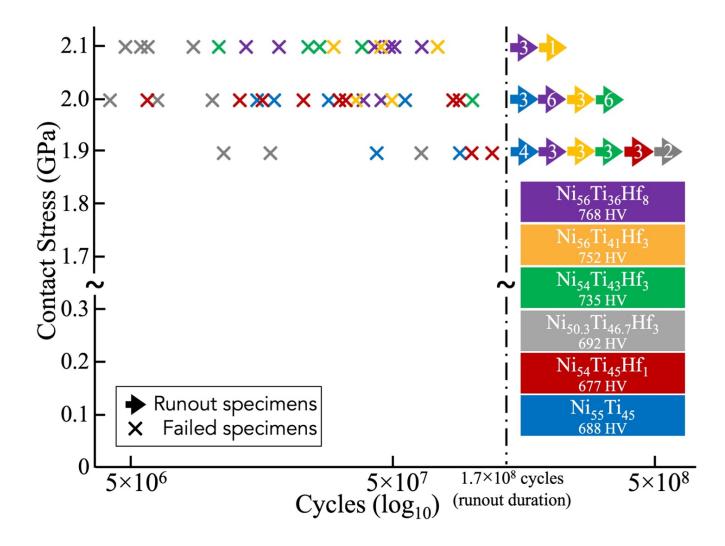
 \leftarrow Slows Ni₄Ti₃ kinetics (NiTiHf retains high hardness with air cooling)

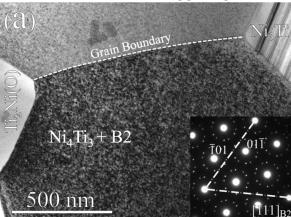
← Hf solid-solution strengthening

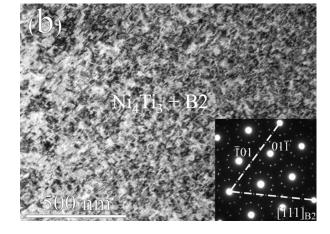

H-phase precipitation strengthening \rightarrow

B. Amin-Ahmadi et al. Scripta Mat. (2017)

Bearing grade hardness (58 - 62 HRC) is retained


NiTiHf Alloy Optimization

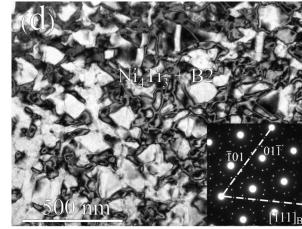


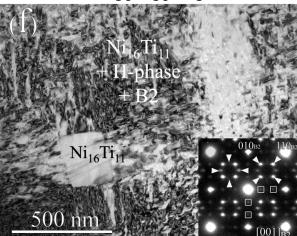


Microstructures of all RCF alloys CANFSA

Baseline Ni₅₅Ti₄₅

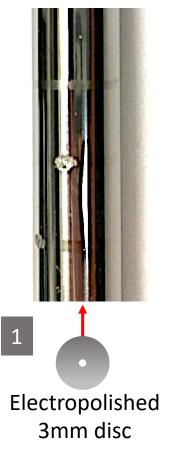
1st Gen Ni₅₄Ti₄₅Hf₁

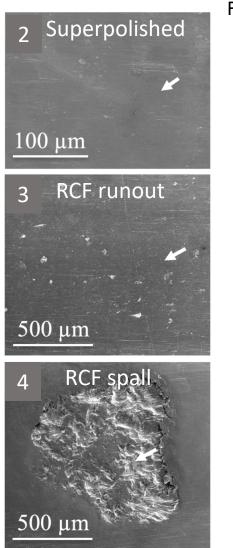



Ni_{50.3}Ti_{46.7}Hf₃ (C) Ni₄Ti₃ + H-phase + B2 500 nm

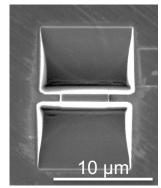
 $Ni_{56}Ti_{36}Hf_8$

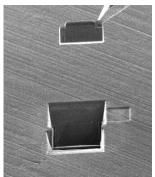
 $Ni_{56}Ti_{41}Hf_3$

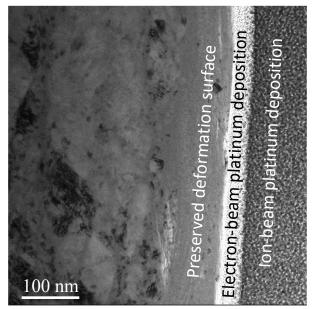

SEMI-ANNUAL MEETING - Fall 2019

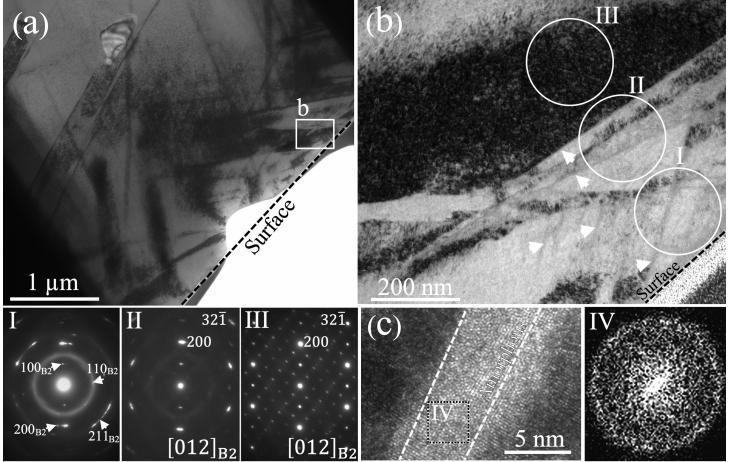

Center Proprietary – Terms of CANFSA Membership Agreement Apply

FIB lift-out samples made from RCF wear-tracks for 2 conditions

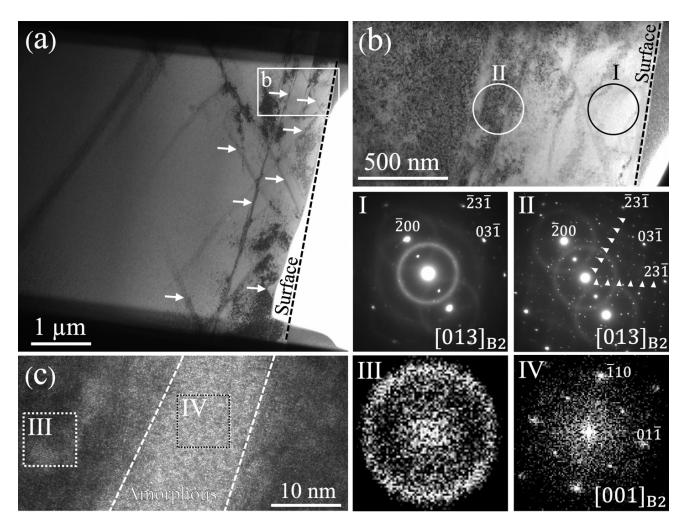


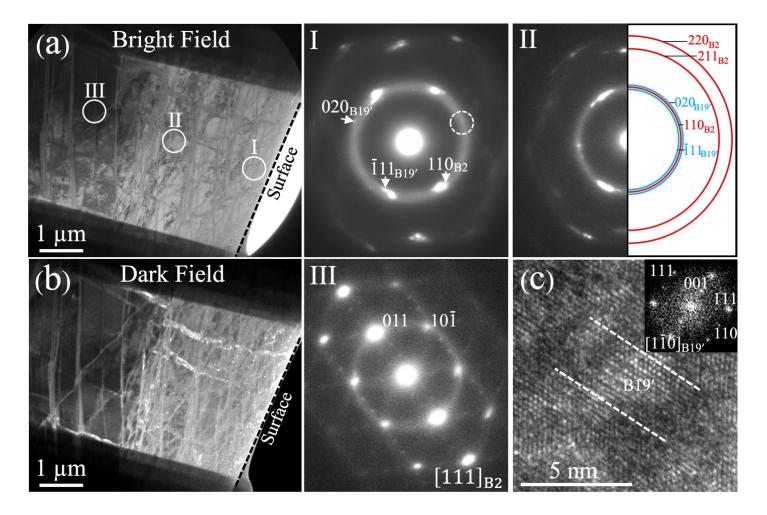

Used RCF rod

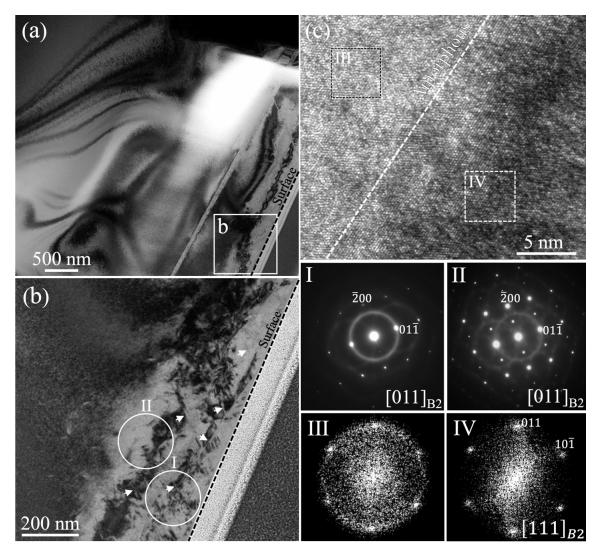

FIB foils taken directly from wear surface


BF-TEM and HR-TEM analysis of subsurface deformation

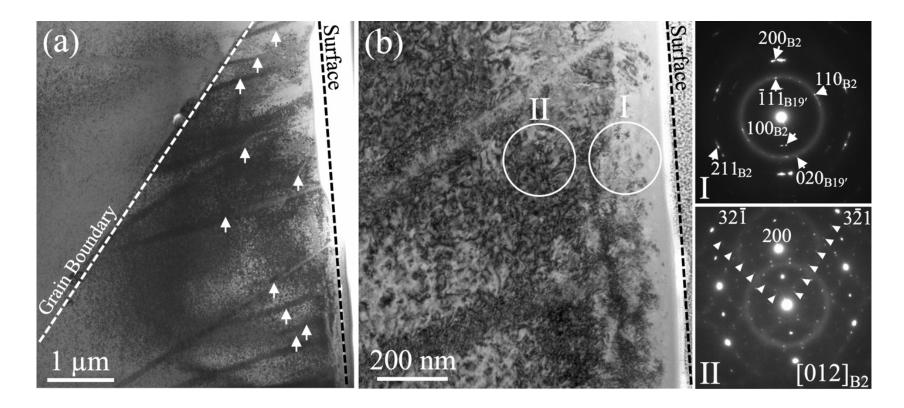
➔ First deposit electron-beam platinum deposition. Lower energy and protects the deformation surface


Ni₅₅Ti₄₅ Superpolished


Ni₅₅Ti₄₅ RCF Runout

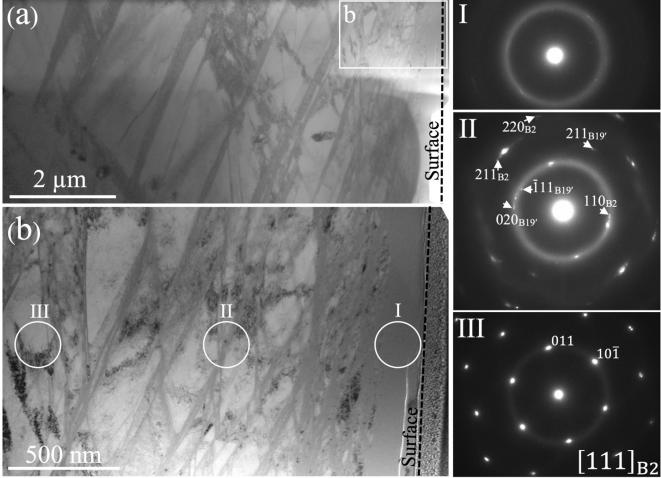

Ni₅₅Ti₄₅ RCF Spall

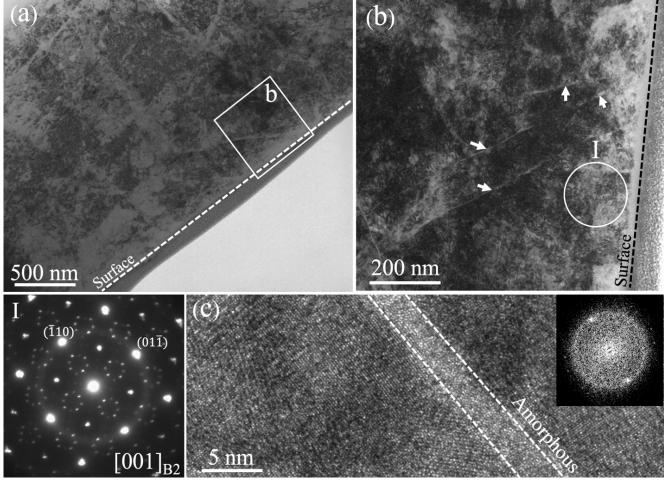
Ni₅₄Ti₄₅Hf₁ Superpolished

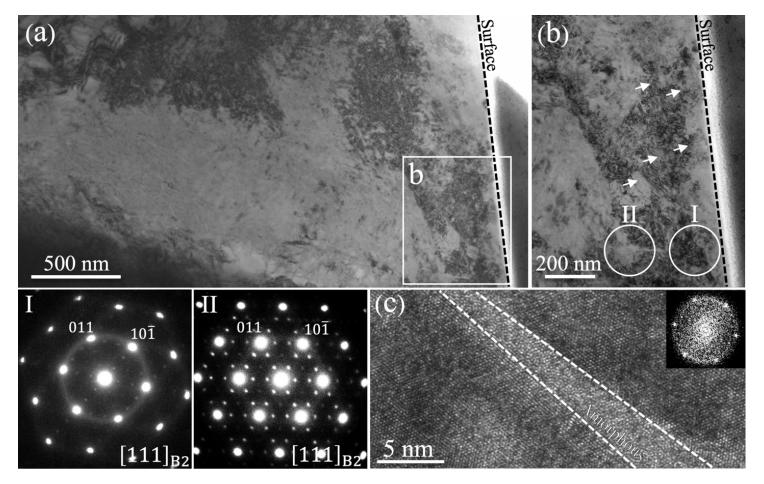


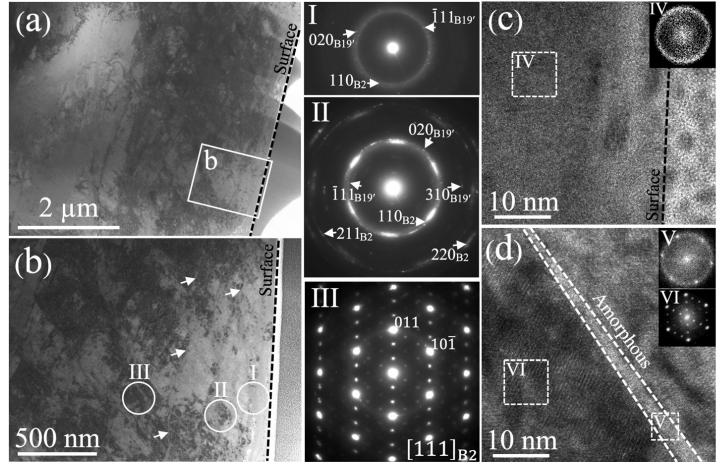
SEMI-ANNUAL MEETING - Fall 2019

Center Proprietary – Terms of CANFSA Membership Agreement Apply


Ni₅₄Ti₄₅Hf₁ RCF Runout


Ni₅₄Ti₄₅Hf₁ RCF Spall


Ni₅₆Ti₃₆Hf₈ Superpolished


Ni₅₆Ti₃₆Hf₈ RCF Runout

Ni₅₆Ti₃₆Hf₈ RCF Spall

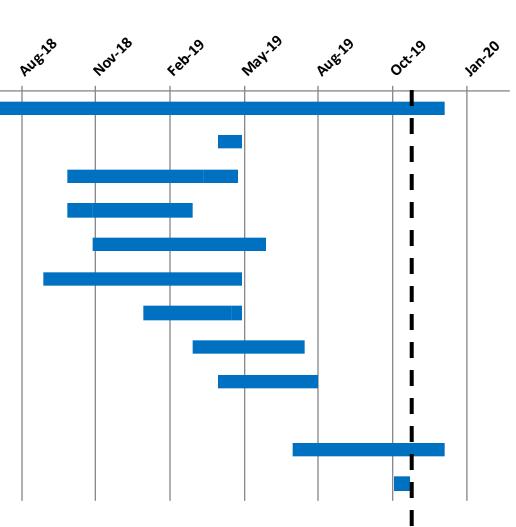
Deformation mechanism in NiTi and NiTiHf alloys under RCF

Center Proprietary – Terms of CANFSA Membership Agreement Apply

Quantification of RCF samples

	Dislocation Density (10 ¹⁶ /m ²)	Precipitation free zone	Deformation band width	Deformation band spacing	Amorphous region	Nano-crystalline region	Deformed region
Superpolish Ni ₅₅ Ti ₄₅	6.2 ± 3	400	26 ± 9	123 ± 26			2 µm
Superpolish Ni ₅₄ Ti ₄₅ Hf ₁	3.6 ± 2	375	21 ± 8	64 ± 12			1 µm
Superpolish Ni ₅₆ Ti ₃₆ Hf ₈	8.5 ± 2	0	9 ± 5	259 ± 113			2 µm
RCF runout Ni ₅₅ Ti ₄₅	11.9 ± 3	800	17 ± 9	79 ± 16			3 µm
RCF runout Ni ₅₄ Ti ₄₅ Hf ₁	6.7 ± 3	350	32 ± 7	456 ± 122	50	50 - 100	3.5 µm
RCF runout Ni ₅₆ Ti ₃₆ Hf ₈	16.8 ± 3	0	≤ 5	102 ± 36			
RCF spall Ni ₅₅ Ti ₄₅		4500			300	300 - 6000	
RCF spall Ni ₅₄ Ti ₄₅ Hf ₁		2000			300	300 - 2500	7 µm
RCF spall Ni ₅₆ Ti ₃₆ Hf ₈		400			100	100 - 500	0.5 µm

Conclusions


- Superpolishing produces amorphous bands in all conditions. Ni_4Ti_3 precipitates are dissolving close to the surface in $Ni_{55}Ti_{45}$ and $Ni_{54}Ti_{45}Hf_1$ alloys.
- Higher density amorphous bands are present in RCF runout condition that extend farther into the sample interior. B2 nano-crystal formation in Ni₅₅Ti₄₅ alloy. B2 and B19' nano-crystal formation in Ni₅₄Ti₄₅Hf₁ alloy. Precipitates are preserved in Ni₅₆Ti₃₆Hf₈ alloy.
- Spall conditions exhibit a graded microstructure. B2 and B19' nanocrystals are observed in all spall conditions. $Ni_{56}Ti_{36}Hf_8$ alloy restricts deformation to ~ 500 nm compared to ~ 5 µm for baseline alloy. Connected to resilient $Ni_{16}Ti_{11}$ and H-phase precipitates in this alloy.

Rolling contact fatigue testing Dent damage tolerance testing DFT calculations/simulations for NiTiHf phases FIB Foil liftout or deformed NiTiHf specimens TEM characterization of deformed NiTiHf specimens NiTiHf tribology paper Manuscript Ni3Ti2 phase letter Manuscript Deformation RCF Paper Manuscript Shock loading paper Manuscript

> Finish / Submit Thesis PhD Thesis Defense

May 18

Thank you very much!

Acknowledgements: Behnam Aminahmadi (Mines) Branden Kappes (Mines) Robert Williams (CEMAS)

Othmane Benafan (NASA GRC) Christopher Dellacorte (NASA GRC) Ronald Noebe (NASA GRC)

Sean Mills Colorado School of Mines seanmils@mines.edu Stebnerlab.mines.edu

Center for Electron Microscopy and Analysis

Summer 2019 CANFSA Meeting – 07/2019 Center Proprietary – Terms of CANFSA Membership Agreement Apply

Center for Advanced **Non-Ferrous Structural Alloys** An Industry/University Cooperative Research Center

Project 17 – Nickel-Titanium-Hafnium alloy design for tribological systems

Student: Sean Mills

Faculty: Aaron Stebner

Industrial Partners: NASA GRC (Ron Noebe, Chris Dellacorte)

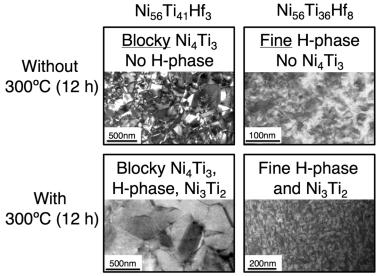
Project Duration: Aug. 2015 – Aug. 2019

Achievement

Novel Ni-rich alloys provide ultra-hard optimized microstructures designed for space-age tribology applications.

Significance and Impact

Hf-alloying could lead to reduction in residual stress by eliminating the need for rapid cooling while retaining high strength and hardness levels of guenched binary Ni-Ti.


Research Details

Rolling contact fatigue testing and microstructure characterization of Ni-rich NiTiHf alloys.

Industrial relevance

Nitinol shape-memory alloy with added hafnium resists both wear and corrosion

January 09, 2016 Source: ASM International

Puris LLC, Bruceton Mills, W. Va., recently signed a limited (partially) exclusive, term license agreement with NASA Glenn Research Center to produce a high-performance, hafniumenhanced shape-memory powder metallurgy alloy that provides resistance to both wear and corrosion.

Marketed under the brand name SM-103, the 60NiTi(Hf) alloy demonstrates a lower residual stress than other 60 nitinol alloys, resulting in improved response to heat treatment and easier processing. It delivers resistance to both wear and corrosion, traditionally considered to be mutually exclusive, in addition to favorable load-bearing properties. These attributes make it well suited to industrial bearings and precision bearing applications.

<www.asminternational.org/web/smst/news/industry/results/-/journal content/56/10180/26098479/NEWS>

C. DellaCorte, M. K. Stanford, R. A. Manco, and F. Thomas, "Design Considerations for Resilient Rolling Element Bearings Made From Low Modulus Superelastic Materials," in *ASME/STLE* 2011 International Joint Tribology Conference, 2011, pp. 223– 224. **Project 29 - Identification of Deformation Mechanisms of Thermally Stable Cast AI-Cu Alloys via Neutron Diffraction and Creep Testing**

Student: Brian Milligan

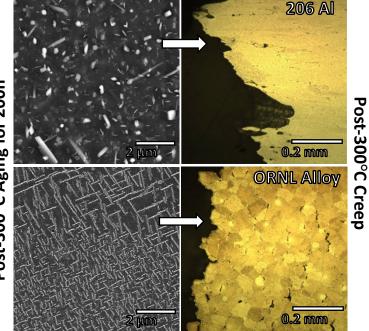
Faculty: Amy Clarke Industrial Partners: ORNL (Amit Shyam) Project Duration: Sept. 2017 – May 2021

Achievement

 Modeling of creep behavior in commercial and experimental AI-Cu alloys at high homologous temperature

Significance and Impact

 Thermally stable AI-Cu cylinder head alloys developed at ORNL outperform commercial alloys during creep loading, allowing for higher engine operating temperatures


Research Details

 Performed creep experiments and developed new low-stress microstructure-based creep model using results

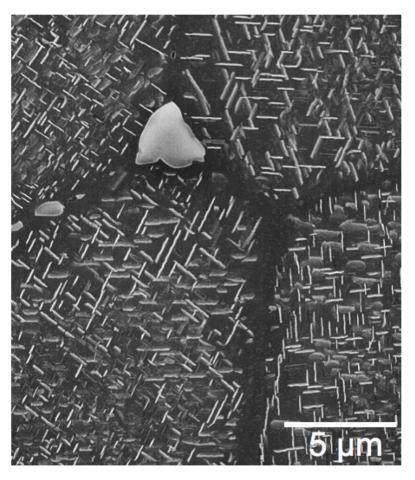
Project 29 - Identification of Deformation Mechanisms of Thermally Stable Cast AI-Cu Alloys via Neutron Diffraction

Student: Brian Milligan

Faculty: Amy Clarke Industrial Partners: ORNL (Amit Shyam) Project Duration: Sept. 2017 – May 2021

Program Goal

 Characterize the mechanical properties and microstructure of thermally stable AI-Cu alloys under various loading and aging conditions


Approach

 Utilize neutron diffraction, microscopy, and mechanical testing to identify deformation mechanisms ex-situ and in-situ

Benefits

 Improved scientific understanding of mechanical properties in AI-Cu alloys as well as insight into how to improve their performance at high temperature

Precipitation in RR350 aluminum alloy